
* *
* Michael's Shell *
* Version 1.0 *
* *
* A.K.A. SHELL *
* *
* Courtesy of the author, *
* Michael Pender *
* Copyright 1991, *
* all rights reserved. *
* *

ii
ABSTRACT

 Prodos BASIC allows a user to attach
external prodos commands to the BASIC
interpreter. However, doing so requires an
advanced knowledge of assembler language and
the Prodos BASIC environment. Furthermore
requiring several commands to exist memory
resident deprives the apple of its already
rather limited programming space.
 Shell programs help to make programming
easier by allowing the user to customize their
environment. This shell program allows the
user to link their programs to the BASIC
environment and execute them as if they were
external commands, but they need not be memory
resident. In fact, all of the details
required to make a command execute
automatically are handled invisibly by the
shell program itself.
 Also included in this package is the
multiprogramming routine known as Daemon.
Daemon taps mouse card interrupts to allow the
coexistence of background tasks, invisible to
the BASIC program executing in the foreground.
Complete source code for Daemon is also
included.

iii
NOTICE OF RIGHTS

 This program is shareware, it costs $30.
For your $30 you get the newest version on
disk, written, bound documentation, source
code, a free upgrade, and a list of other
shareware products I make. Special licensing
must be acquired for companies which wish to
reproduce this work in any form.

 I believe in the concept of Shareware,
that software should be cheap, and that one
should be able to try a piece of software
before shelling over your money. Individuals
should feel free to copy this program for
their own use. If after having this program
for ten days you still find yourself using it
send me the $30, maybe you'll like the newest
version even better. If you know me at all,
you know that I tend to upgrade programs
almost constantly, and I always try to
incorporate improvements suggested.
If you decide you don't like it, give it to a
friend. I'm far from rich, and this
particular project took me over two years and
some investment to complete. I write this
stuff as a hobby, and I don't expect to make
any real money at it, but you could always
surprise me. :^)

iv
I can also be reached to answer questions.

Michael Pender
1480 Mapleton Avenue
Suffield, CT, 06078
(203) 668-0147

Disclaimer:
 I have no association with the Laser
series of computers (other than owning one),
and no relation to Apple computer. Products
mentioned such as DOS 3.3 and Prodos are the
trademarks/copyrighted products of Apple
Computer Co.

 Having purchased this program you are
entitled to use and copy this disk and its
programs as you see fit for your personal use.
There are no royalties for programs developed
with this product, but if you include code
from this system in your programs please
include a note in the copyrights of the
software to indicate the source. Further, as
this program is shareware you should feel
encouraged to distribute copies.

 If you enjoy this program and are not a
registered owner, please support my efforts by
becoming a registered owner by sending $30 for
the disks and
documentation, as well as a free update and
status reports.

v

vi
TABLE OF CONTENTS

 1.0
INTRODUCTION................................1

 2.0
 GETTING STARTED.............................4
 3.0
 INCLUDED COMMANDS...........................8

 3.1
BACKUP......................................8
 3.2
BOOTSLOT....................................8
 3.3
C80..10
 3.4
CLOCK......................................10
 3.5
CPREFIX....................................11
 3.6
DATE.......................................11
 3.7
DOFF.......................................11
 3.8
DON..12
 3.9
DREM.......................................12
 3.10
ECHO.......................................13
 3.11
EJECT5/EJECT7..............................13
 3.12
FLIST......................................13
 3.13
GO...13
 3.14
NEW..14
 3.15
RECALL.....................................14
 3.16
SHORT......................................15
 3.17
TIME.......................................15
 3.18
TIMER......................................17
 3.19
TYPE.......................................18
 3.20
VLIST......................................18
 3.21
VSET.......................................18

 4.0
PROGRAMMER'S NOTES.........................19
 4.1
BASIC......................................19
 4.2
ASSEMBLY LANGUAGE..........................21
 4.3
HYPER C PRODOS.............................21
 4.4
SCRIPTING FILES............................21

 5.0
CONCLUSIONS23

CHAPTER 1 - INTRODUCTION
 I started this program in 1988 ago. It
was originally named Disk Commander, when I
tried to implement it under DOS 3.3. Now I
just call it SHELL (I was going to call it
C.SHELL but decided to put it to rest). I had
a lot of ideas that didn't work out (What do
you mean I can't call DOSCMD with a VERIFY
request?), and found a few errors in the
Prodos 8 Technical Reference Guide the hard
way, but all in all it seems to work, and it
makes programming under Prodos BASIC a little
easier to handle. At any rate it makes one
slightly less likely to tear their hair out
because of a dumb mistake.

 Shell actually configures itself as an
external command for Prodos BASIC. It
intercepts commands after Prodos is done with
them, but before BASIC gets a crack at them.
It intercepts the external command vector, and
saves the pointer to the next external
command, but for reasons discussed later you
will see why it is not advisable to load other
external commands before SHELL, as SHELL may
interfere with their operation. The theory is
simple, if the command makes it to SHELL, it
is either a command for SHELL, a BASIC
command, or someone goofed typing. SHELL goes
to its default directory, looks for a command
of the name typed, and
if a file of that name is found it is loaded
and executed using the Prodos smart run (dash)
command.

 This program is effectively a new
programming environment. The nature of the
command structure is extensible, making the
setup very easy to customize to one's tastes.
My younger sister found it amusing to create
commands to respond to swearing.

The program serves three main functions:

 First, the extensible shell allows for a
person to create their own commands to
simplify tasks under BASIC. The shell also
allows a means of support for custom drivers
for different computers. For my computer (a
Laser 128ex) I wrote a custom clock routine
(too cheap/poor to buy one) that taps mouse
interrupts. Non-ROM devices are not only
possible under Prodos, but may now be made
convenient, custom drivers may be

automatically loaded on startup. I wrote a
routine to intercept the printer output for
slot #1 and drive my electronic typewriter
(and the manufacturer said its not Apple-
compatible :^).

 Second, this program helps to relieve
some of the possibility for errors. The GO
command for example makes a backup of your
program in case you need to revert back. Ever
accidentally delete a line in a
program and can't figure out what it was? The
recall command can usually repair a program
accidentally NEWed out of existance. The NEW
command itself was altered to allow one to
back out. And even the BYE command can be
recovered from using BOOTSLOT's zero function.
These commands are not an absolute defense,
nothing is, but they can prevent some minor
catastrophes that I've encountered before.

 Third, this allows one to create a
customized user interface. The shell allows
for nearly English command recognition. In
future versions this shall be improved upon.
The control-key replacements make some tasks
easier. Also various editor functions have
been added, giving a purpose to the TAB and
DEL keys on your apple's keyboard.

CHAPTER 2 - GETTING STARTED
 If you bought the disk you're all set,
the program will boot up, and install itself.
This is fine if all you want to do is copy the
program disk and store BASIC programs on the
same disk. However many people will be
transferring this to another disk (/ram is a
good choice). This has its benefits and
drawbacks. Selecting a different disk as home
for your commands has been made rather easy to
do. Just set the prefix to the directory you
want, using the PREFIX command, and
-/SHELL/SHELL (assuming its still on the WOS
disk) to invoke the shell. SHELL will read
the current prefix and store this as the
directory in which to ALWAYS find its
commands. You can change the command
directory prefix using the CPREFIX shell
command. This is done because in ordinary
programming you may change your current prefix
several times. Some of the commands do this
themselves. If the prefix is set, SHELL
always knows where to look.

Remember, YOU MUST SET THE PREFIX BEFORE
INVOKING SHELL!!!!

 Once SHELL is invoked it loads in at
$4000, and checks if it is already present.
If not it relocates to the absolute address
$9600. Yes, I said ABSOLUTE
ADDRESS. Programmers beware!! This was
necessary both to save me work, because I
couldn't figure out how the bitmap worked, and
because the nature of the program requires it.
SHELL must be invoked before other external
commands you may choose to use. For example,
if you had the very popular utility DOGPAW on
disk, and you loaded it before SHELL,
depending on your use of directories you might
end up just reloading the program every time
you issued the DOGPAW command. SHELL would go
to disk, looking for a file called DOGPAW. On
finding the file, shell would load it. DOGPAW
would see that it was already present in
memory and would return to BASIC. Hence,
DOGPAW wouldn't work properly.
 Also the absolute address is a
convenience to programmers who wish to write
routines compatible with SHELL, not only
because you know where it is, but when your
routine is invoked SHELL made a copy of the
input buffer, telling Prodos not to parse the
parameters, but storing the command library
prefix in a buffer at $9700, the command as it
appeared in the input buffer at $9800, and the

prefix followed by the name of the routine at
$9900. The library prefix is stored as
length, prefix (high bit clear), the input
buffer is an exact replica, and the buffer at
$9900 is the string length, prefix followed by
the routine name. This
allows commands to have parameters that
BASIC.SYSTEM would not recognize and would
generate an error for.
 However, the absolute address requirement
of SHELL means that SHELL must be loaded
before other external commands. To then load
other external commands, treat them normally,
as if SHELL was not present. That is, if one
wanted to have SHELL, DAEMON, and DOGPAW in
memory simultaneously:

]-shell
]-daemon
]-dogpaw

 Every command you type after SHELL is
installed that is not a normal or extended
command under BASIC.SYSTEM will be looked for
on disk in the volume specified. This
includes basic commands like NEW or LIST. So
for speed, it is advisable to make your
default prefix on a ramdisk, also because
you'll know exactly what commands are there:
copy only the ones you use.
 Any command you create and place in the
COMMANDS directory then becomes part of your
available disk-based command set, you need not
turn the power off or reboot or any such
thing. BE WARNED!!! Fooling with some of the
BASIC commands can have side effects. If you
make a BASIC program called LIST and then go
to
list a different program you just lost it when
the BASIC program named LIST was loaded into
memory. You could either make an EXEC file
called LIST that calls the BASIC code as I did
with NEW, or you could use LIST which will be
interpreted as a BASIC command, not a disk
command. The second method is by far more
dangerous, since you only need forget once.

CHAPTER 3 - INCLUDED COMMANDS
 These commands are invoked by just typing
their name after the SHELL program has been
loaded into memory and executed.

3.1 BACKUP
 Certain commands, such as the GO command
make a copy of the program in memory before
continuing. The program is saved on disk as a
file called BKP. This is because some of the
commands are written partly in BASIC, and it
just wouldn't do to accidentally wipe out
hours of work by typing a command you weren't
familiar with. Hence the purpose of the
BACKUP command. Whenever you make a major
step forward in a program use the GO command
to run it instead. Then should you make a
major error and accidentally wipe out part of
your program, merely typing BACKUP will revert
to the last version saved.

See also GO, NEW, and RECALL.

3.2 BOOTSLOT
 This is actually a program I wrote
independently before SHELL was yet completed.
BOOTSLOT is a SYS file, making it easy to run
from many program selectors, including the
BASIC.SYSTEM quit code.
BOOTSLOT was originally written to allow
people with selector programs to chose a slot
with a non-Prodos volume to boot. That is, if
a person has a Prodos formatted 3.5 inch drive
in slot 7, which comes up automatically when
they turn on the power, and they want to boot
from a device in slot 6 (say a 5 1/4 inch disk
with a game in DOS 3.3 on it), all they need
do is select the BOOTSLOT program, and then
press the number key for the appropriate slot
they wish to boot from, in this case, the '6'
key.
 BOOTSLOT has another important feature
however. If you're working in BASIC and you
use the BYE command to leave by accident,
normally your program would be lost without
hope. But the 0 option allows a person to
exit back to the last system program that was
running (sort of). Unfortunately to have this
feature work the program itself had to be set
up as a system program, so it must load in at
$2000, possible disturbing other system
programs. In general, don't expect the 0
option to allow you to return to your favorite
word processor or modem program, but it will

allow you to return to BASIC quite nicely,
where your program should be fine.

*** One warning, if your program is so long
that it extends into the the Hi-res page one
area, part of the program may be destroyed
when BOOTSLOT itself loads in.
This only applies to programs longer than 6144
bytes (roughly 13 blocks on disk or bigger).

3.3 C80
 This is a very simple command provided
for demonstration purposes that effects a PR#3
command, followed by the CATALOG command.

3.4 CLOCK
 This short routine (don't confuse short
with simple, this routine was a pain in the
foot to write) places a little clock in the
upper left corner of the screen. Being
interrupt driven, the routine is easily forced
off by an SEI instruction, or if one presses
RESET. To reconnect at any time, just use the
DON command to reconnect DAEMON. As it is
currently configured, this command shows the
current time stored in the prodos standard
locations. This routine was designed to
remind people (myself included) when they've
been spending too much time at the box and
they could use a good stiff cup of tea or some
sleep. This routine calls DAEMON to perform
the interrupt processing, so DAEMON must be
loaded prior to calling CLOCK.

See also TIMER, DON, DOFF, DREM.

3.5 CPREFIX
 This command allows one to change the
command library prefix after the SHELL program
has already been installed. Normally SHELL
selects the prefix directory active when it is
first installed, but CPREFIX allows one to
change it on the fly. If you copied all the
commands to a ramdisk say, and wanted to
change the prefix so SHELL would look there
instead, or if you goofed, and hadn't set the
prefix before running SHELL, this allows one
to change the prefix to something new.

The new volume/directory selected need not be
online at the time CPREFIX is used.

3.6 DATE

 This routine prompts the user for the
date and places it in Prodos-compatible form
for stamping files

See also TIME.

3.7 DOFF
 This routine TEMPORARILY deactivates
DAEMON. It does not remove the interrupt
handler, and does not free the memory DAEMON
occupies.

*** Warning, disconnect DAEMON before entering
another system program. Use the DREM command
to permanently
remove DAEMON from memory before transferring
control to another system program.

3.8 DON
 This routine activates DAEMON. When
DAEMON is first installed it does not activate
interrupts. This was done to prevent
confusing programs while a system might not be
fully configured. This routine may also be
called to reconnect DAEMON after reset is
pressed, or it is stunned.

*** Calling DON when DAEMON is not present, or
after DAEMON has been removed may have
unpredicted results.

*** Warning, disconnect DAEMON before entering
another system program. Use the DREM command
to permanently remove DAEMON from memory
before transferring control to another system
program.

3.9 DREM
 Daemon MUST be disconnected before
entering another system program. Use the DREM
command to permanently disconnect DAEMON, from
memory, and from Prodos's interrupt handler.

3.10 ECHO
 This command issues a PR#1 command to the
system, turning on the printer for most Apples
with printers, then it issues the Ctrl-I I SSC
command, enabling the output of text to the
screen and printer simultaneously. This
command too is provided for as a demonstration.

3.11 EJECT5/EJECT7
 These commands allow apple users without
a convenient means of ejecting a disk in a 3.5
inch apple drive to eject the disk easily.
These commands are no longer provided with the
system, since some drives may be scrambled by
this command. I don't want someone
accidentally damaging their disk.

3.12 FLIST
 This routine will take the BASIC program
currently in memory, open a file named LIST,
and then type the listing of the program to
the file named LIST.

3.13 GO
 The GO command is much like issuing the
run command from BASIC, except that it also
makes a copy of the current program in memory,
and saves it on disk as
a file named BKP. This is useful because it
is no more inconvenient than typing RUN (hell
its even one character shorter), but you have
a current backup of your file in case all hell
were to break lose.

See also the BACKUP command.

3.14 NEW
 The NEW command is activated like the
others, when you type the word NEW in
immediate mode. Many was the time I
accidentally wiped a program out of this world
with the NEW command under Applesoft. This
command is very similar, it just prompts you
to make sure you know what you're doing before
it continues to wipe your program out of
existance.

See also GO, BACKUP, and RECALL.

3.15 RECALL
 This is a very short machine language

program I wrote a few years ago to bring an
Applesoft program back from the dead under DOS
3.3. It works just as well under Prodos.
Supposing you've neglected to avail yourself
of the GO command recently, and the back-out
now option of NEW, and went ahead and wiped
your basic program out anyway. RECALL will
rebuild the Applesoft pointers, allowing you
to bring that program back from
the dead. Using the GO and BACKUP commands is
preferable, because RECALL will rebuild the
last Applesoft program in memory, which just
might be the BASIC part of the NEW command
itself. But if you're in a bind, or you
didn't happen to use my modified NEW command,
you're probably in luck.

(Just for safety learn how this works on an
unimportant file first, huh?)

See also GO, BACKUP, and NEW.

3.16 SHORT
 This command redefines the output of a few
of the control keys, the TAB key and the DEL
key. On a Laser the selection of keys should
be obvious, as for the most part they
correspond to the function keys atop the
keyboard.
 This program reroutes the input vector
from slot #1. Since most people have their
printer card in this slot, it should not be a
problem. To then access the driver a person
need only type IN#1 to connect to it at any
time, or IN#0 to disconnect it. The program
itself relocates the necessary data and
protects itself by lowering HIMEM. Therefore
it is always available after being loaded.
The loader itself checks to make sure it
is not already present in memory before
loading it in again.

Laser Key Apple Key Function
TAB Ctrl-I
 Like pressing the forward arrow key five
times. Makes editing much quicker.

DEL ASCII 127
 Backspaces once, types space, and
backspaces again.

F1 Ctrl-@
 Enters monitor by typing CALL-151
(return).

F2 Ctrl-A

 Leaves monitor by typing 3D0G (return).

F3 Ctrl-B
 Types CAT (return) for a 40 column
catalog.

F5 Ctrl-D Types TEXT:LIST (return)

F6 Ctrl-E Types POKE 33,33
(return)
F7 Ctrl-F Types LOAD (no return)
F8 Ctrl-G Types SAVE (no return)
F9 Ctrl-L Types PREFIX (no return)

3.18 TIMER
It is quite accurate, provided the user does
minimal disk access. Interrupts are
deactivated during disk accesses, and the
routine is driven by the interrupts of a mouse
card. If you have a mouse card in any slot
(no mouse necessary), you can install the
visible clock by typing the CLOCK command.
This routine is much like the CLOCK command in
the way it processes interrupts. Unlike the
CLOCK command however, TIMER stands for
Invisible CLOCK. Unlike its friend CLOCK,
TIMER does not place a clock in the corner of
the screen, rather it is used for time and
date-stamping files for Prodos. Like CLOCK
however it is easily removed, and easily re-
activated by using the TIMER command. Both
clocks will not run at the same time, only the
first one installed will. This clock is
slightly less obvious when it is disconnected,
but an easy test exists. Press control-g
(with SHORT deactivated), or PRINT CHR$(7).
If it sounds like a warble, the routine is
active. Press RESET to deactivate. TIMER
reads the current time and date from Prodos,
so if you've used a routine other than DATE or
TIME to set the time, it will still work.

*** Press reset to deactivate the TIMER
routine before entering another system program.

See also CLOCK, DON, DOFF, DREM, TIME, DATE.

3.19 TYPE
 By default, this command will type a text
file to the screen or printer. The user is
prompted for the filename to print. Typing
from other file types is also supported.

3.20 VLIST
 This command notes the current online
volumes and displays them to the screen. The
command itself is quite simple, but this
command is not included merely for
demonstration purposes. The current prefix is
maintained, so you needn't worry about
accidentally saving something on the wrong
volume. However, if no prefix had been set
before calling this command, the prefix after
will be set to the prefix of the current drive.

3.21 VSET
 This command is actually a BASIC program

I wrote independently. Its another one of the
many program selectors available. This one
however is accessible at the stroke of the
letters VSET. It uses a smart run command (-)
so it can run BASIC, Binary, Exec, or System
files, assuming of course the program can
normally be run using the dash command. That
is, some system programs would overlay on
BASIC, so they are not allowed to load via the
dash.

CHAPTER 4 - PROGRAMMER'S NOTES
4.1 BASIC
 To execute a SHELL-based external command
from BASIC, just call it as if it were any
other Prodos external command:

 PRINT CHR$(4)"C80"

 However one may find that commands set up
as EXEC files don't respond well to activation
within a program, some of these may be
corrected by rewriting them in assembler, but
the tools available to an assembly language
programmer are also more limited in some ways.
There are many Prodos commands that cannot be
executed from assembly level. My advice,
stick to the non-exec commands from inside
your programs, or if you really neeed that
function, look at its exec file to see how it
was done.
 The TIMER routine will prove useful from
inside BASIC programs for timing sorts, or for
calendar programs you may write, maintaining a
record of how long a modem connection has been
established, or whatever. If there is a next
version of SHELL I will set up a pointer to a
buffer that will contain the clock
information. The timer is accurate to 1/60
second (under 17 milliseconds), which should
be fine
for timing things under BASIC. It is just
inconvenient with the current program. As I
said, perhaps in the next release of SHELL.

4.2 ASSEMBLY LANGUAGE
 As mentioned earlier SHELL loads in at an
ABSOLUTE address to allow easier access to its
buffers. This is not a serious drawback as it
provides for subsequent versions to install
smart commands. That is, if one types "TYPE
filename", the TYPE command itself will begin
by checking SHELL's buffer to see if a
filename was already given.
 A command like CPREFIX could be altered
to check to see if a prefix was supplied with
the command, why bother querying the user if
they already typed it? But as I said, that's
the next version.

4.3 HYPER C PRODOS
 It wouldn't make much sense to port SHELL
to Hyper C, as disk based commands are already
supported by the default shell. However

DAEMON would be useful from the C environment,
and I am currently attempting this port.
4.4 SCRIPTING FILES
 Many routines are actually exec script
files that execute BASIC or 6502 assembly
language programs. As
of this version, script files are normal exec
files, of type txt. Wildcard and parameter
replacement is not supported, but the original
buffer is preserved by the SHELL program,
where the individual routines may parse the
parameters.
 If one wishes to execute an ORIGINAL
BASIC command that has been replaced by a new
command of the same name, prefix the command
with a colon:

eg., :PRINT

 Tokenized statements that are part of a
BASIC program are NOT replaced by their
namesakes. eg.,
10 PRINT

CHAPTER 5 - CONCLUSIONS
 SHELL is very extensible, one could even
say ultimately extensible, and it works with
most (well ALL the ones I've tried) Prodos
external commands, and will probably work with
any future command, so long as it is
relocatable, or self-relocating.

 Feel free to create your own commands for
SHELL, that's why I made it. If you come up
with something really good, let me know, maybe
I'll include it in the next version (it will
of course be listed under your name).

