Kyan Raseal PLUS

for the Apple Il

USERS MANUZ

KYAN SOFTWAREﬂIN
SAN FRN\ICISCO CAL]FO NIA

Kyan Pasecal PLUS

Conforms to the ISO Standard
for Pascal Compilers.

This software is designed for
any Apple I computer

This software is compatible with
the Kyan Programming Toolkits

Copyright, 1986
Kyan Software Inc.
San Francisco, California

PREFACE

Notice

Kyan Software reserves the right to make improvements to the
products described in this manual at any tire and without notice. Kyan
Software cannot guarantee that you will receive notice of such
revisions, even if you are a registered owner. You should periodically
check with Kyan Software or your authorized Kyan Software dealer.

Kyan Software programs are sold only on the condition
that the purchaser agrees to the terms contained in the
Software License Agreement that begins on the following
page. Please read this agreement before using the
software.

Copyright ©1986 by Kyan Software, Inc.
1850 Union Street #183
San Francisco, CA 94123
(415) 626-2080

Kyan Pascal and KIX are trademarks of Kyan Software Inc.. The word
Apple and ProDOS are registered trademarks of Apple Computer Inc..

PREFACE

Software License Agreement

IMPORTANT: Kyan Software products are sold only on the
condition that the purchaser agrees to the terms of the
following license. PLEASE READ THIS AGREEMENT
CAREFULLY. If you do not agree to the terms, return the
unused package to Kyan Software or to your dealer
immediately for a refund. If you agree to the terms
contained in this License Agreement, complete the
enclosed registration card and return it to Kyan Software.

When you purchase a Kyan Software product, you
acknowledge that:

1. Kyan Software has a valuable proprietary interest in the computer
programs and printed documentation (hereafter called "SOFTWARE").
What you have purchased is a non-transferable and non-exclusive
license to use the SOFTWARE. Kyan Software retains ownership of
the SOFTWARE.

2. You may not copy or reproduce the SOFTWARE for any purpose,
other than to make backup or archive copies as provided for in Section
117 of the U.S. Federal Copyright Law, without the express permission
of Kyan Software.

3. You may not copy, distribute, or otherwise make the SOFTWARE
available to any third party without the express permission of Kyan
Software.

4. If you merge or use the Kyan Pascal Runtime Library (LIB) in
conjunction with another program, it continues 1o be the property of
Kyan Software. However

Kyan Software hereby grants you a non-exclusive license
to merge or use the Runtime Library (LIB) in conjunction
with your own programs provided that:

a) You acknowledge Kyan Software's copyright and
ownership of the Library in a prominent location in the
written documentation and on the magnetic media.

PREFACE

Software License Agreement (cont.)

b) You include Kyan Software's DISCLAIMER OF
WARRANTY in the written documentation.

¢) You notify Kyan Software in writing that you are
exercising your rights under this agreement.

This license to merge or use portions of the
SOFTWARE in your own programs is limited to
the LIB file only. All other tiles are specifically
excluded from this license. Please contact
Kyan Software for information regarding the
license and use of other Kyan software
modaules.

5. This license is effective until terminated. You may terminate it at any
time by destroying the SOFTWARE along with all copies, modifications
and merged portions in any form. It will also terminate if you fail to
comply with any term or condition of this Agreement. You agree upon
such termination to destroy the SOFTWARE together with all copies,
modifications and merged portions in any form.

Copyright

This users manual and the computer software (programs) described in it
are copyrighted by Kyan Software Inc. with all rights reserved. Under
the copyright laws, neither this manual nor the programs may be
copied, in whole or part, without the written consent of Kyan Software
Inc. The only legal copies are those required in the normal use of the
software or as backup copies. This exception does not allow copies to
be made for others, whether or not sold. Under the law, copying
includes translations into another language or format.

PREFACE

Limited Warranty

Kyan Software warrants the diskette(s) on which the Kyan software is
furnished to be free from defects in materials and workmanship under
normal use for a period of ninety (90) days from the date of delivery to
you as evidenced by your proof of purchase.

Kyan also warrants that this software performs substantially in
accordance with the published specification statement, the
documentation, and authorized advertising. Kyan, if notified of
significant errors within 90 days from the date of purchasg, will atits
option:

a) correct demonstrable and significant program or
documentation errors within a reasonable period of time; or

b) provide the customer with functionally equivalent software; or
c) provide or authorize a refund.

Except for the limited warranty described in the preceding paragraphs,
Kyan Software makes no other warranties, either express or implied,
with respect to the software, its merchantability or its fitness for any
particular purposes.

Some states do not allow the exclusion or limitation of implied
warranties or liabilities for incidental or consequential damages, so the
above limitations or exclusions may not apply to you.

This Agreement constitutes the entire agreement between the parties
concerning the subject matter hereof.

PREFACE

Disclaimer of Warranty -- Apple Computer Inc.

Apple Computer Inc. makes no warranties, either express or implied,
regarding the enclosed computer software package, its merchantability
or its fitness for any particular purpose. The exclusion of implied
warranties is not permitted by some states. The above exclusion may
not apply to you. This warranty provides you with specific legal rights.
There may be other rights that you may have which vary from state to
state.

ProDOS is a copyrighted program of Apple Computer Inc. licensed to
Kyan Software to distribute for use only in combination with Kyan
Software products. Apple software shall not be copied onto another
diskette (except for archive purposes) or into memory unless as part of
the execution of Kyan Software products. When the Kyan Software
product has completed execution, Apple software shall not be used by
any other program.

Acknowledgement
Kyan Software would like to acknowledge the major contribution to this
manual made by:

Technical Writers Inc.
P.O. Box 6687
New York, NY 10128
(212) 861-0216

PREFACE

WELCOME TO THE
KYAN SOFTWARE FAMILY

Kyan Pascal is the core of a powerful software development system.

It has been tested for conformance to the ISO Pascal standard (level 0).
Kyan Pascal is designed to be used with Kyan's Macro Assembler,
MouseText Toolkit, Advanced Graphics Toolkit, System Ultility Toolkit,
TurtleGraphics Toolkit , MouseGraphics Toolkit, and other programming
tools currently under development. These toolkits, when used in
conjunction with Kyan Pascal, make software development faster and
easier. Kyan Pascal consists of this user manual and a flippy diskette
(where program files are recorded on both sides of the disk).

We strongly recommend that you make and use backup copies of the
Kyan Pascal diskette. Keep your original Kyan diskette in a safe
location in case something happens to your copies. (Remember
Murphy is alive and well, and he loves to mess with computers!)

Kyan Software has enclosed an owner registration card. Please fill in
and return this card as soon as possible. Registered owners of Kyan
Software products are eligible for technical support and periodic low-
cost software upgrades. Registered owners can also subscribe to
"UPDATE Kyan", a bimonthly newsletter which contains
programming tips, utility programs, and the latest information regarding
upgrades and new product releases.

Copy Protection

Kyan Software products are not copy-protected. As a result, you are
able to make backup copies and load your software onto a hard disk or
into a RAM expansion card. We trust you. Please do not violate our
trust by making or distributing illegal copies.

PREFACE

Technical Support

Kyan Software has a technical support staif ready to assist you with any
problems you might encounter. If you have a problem, we request that
you first consult this users manual. We have worked very hard to
identify and include in this manual, the answers to questions and
problems most frequently encountered.

If you have a problem which is not covered in the manual, our support
staff is ready to help. If the problem is a program which won't compile or
run, we can best help if you send us a description of the problem and a
listing of your program (better yet, send us a disk with the listing on it).
We will do our best to get back to you with an answer as quickly as
possible.

If you question can be answered on the phone, then give us a call. Our
technical staff is available to assist on Monday through Friday between
the hours of 9 AM and 5§ PM, West Coast Time. You may reach them by
calling:

Technical Support: (415) 626-2080

Suggestion Box

Kyan Software likes to hear from you. Please write if you have sugges-
tions, comments and, yes, even criticisms of our products. We do
listen. It is your suggestions and comments that frequently lead to new
products and/or product modifications.

We encourage you to write. To make it easier, we have included a form
in the back of this manual. This form makes it easier for you to write and
easier for us to understand and respond to your comments. Please let
us hear from you.

Mailing Address: Kyan Software Inc.
1850 Union Street #183
San Francisco, CA 94123

TABLE OF CONTENTS

CHAPTER
PREFACE

INTRODUCTION
ISO Pascal
Kyan Pascal
Kyan Pascal: A Product in
Evolution
Other References
How to Use This Manual

I. GETTING STARTED

Professional Disk Operating
System (ProDOS)

Quick Guide to ProDOS Utilities
Copying a Disk
Formatting a Disk
Copying a File
Deleting a File
Listing a Directory

Configuring Kyan Pascal
Single Drive System
Two Drive System
Mass Storage System

Il. THE EDITOR

Overview

Entering the Editor

Creating a File

Editing an Existing File
Cursor Movement Commands
Block Commands

Other Editor Features

Special Editor Commmands

PAGE

-1

-6

TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER PAGE

ll. KYAN PASCAL

The Pascal Compiler Hi-1
Compiling a Program -2
Output Control -7
Include -9
Strings l-10
Graphics n-14
Chaining Programs -18
Creating Special Disks and Files i-22
Running a Compiled Program i11-23
Random Numbers n-23
Conclusion -24
IV. TUTORIAL

Pascal Programs V-3
Entering Formulas IV-11
Decision Making Iv-21
Integers and For Loops IvV-29
Strings and Arrays IV-37
Boolean Variables IV-49
Scalar Variables 1V-55
Procedures IV-67
Functions Iv-77
Scope and Nests IV-83
Arrays IV-95
Records IV-113
Sets IV-127
Files IV-135
Pointers IV-155

TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER

V. ASSEMBLY LANGUAGE
PROGRAMMING

Use of the Kyan Assembler
Assembly Language Routines
Assembly Code and Procedures
Miscellaneous Operations

VI. KIX OPERATING ENVIRONMENT

Overview

The KIX Structure

KIX Commands

Directory Control

Listing Directory and File Contents

Manipulating Files, Directories, and
Volumes

Comparing Files and Volumes

Searching Files and Directories

Date, Display, and System Commands

Abbreviations and Wild Cards

Useful KIX Command Lines

Notes for KIX users

VIl. REFERENCE GUIDE

APPENDICES

A Guide to ISO Standard Pascal

B Kyan Pascal Technical Specifications
C Compiler Error Messages

D ProDOS Error Messages

E Assembler Error Messages

F Runtime Error Messages

G ASCII Character Set

INDEX
SUGGESTION BOX

VI-8

Vi-i4
VI-19
VI-20
Vi-22
Vi-28
VI-33
VI-38

Vi1

TABLE OF CONTENTS

INTRODUCTION

ISO PASCAL

Pascal is a language used to program computers. It was developed in
the late 1960's by Niklaus Wirth, a professor of computer science at a
major European university. Professor Wirth had become frustrated by
the lack of a structured computer language which could be taught to
students and used in large software development projects.

Professor Wirth teamed up with Kathleen Jensen, and the Pascal
language was formally introduced in 1971. Their principal objectives in
introducing the language were "...to make available a language suitable
to teach programming as a systematic discipline based on certain
fundamental concepts clearly and naturally reflected by the
language..." and "...to develop implementations of this language which
are both reliable and efficient on presently available computers.”
(Reference: "Pascal User Manual and Report”, Jensen and Wirth,
Springer-Verlag, Berlin, 1974).

As a programming language, Pascal has a number of significant
advantages.

1. Pascal compilers are available for almost any computer,
ranging from the smallest micro-computers to the largest
super-computers. This means that programs written in
Pascal can easily be transported from one computer to
another.

2. Pascal is a structured programming language. Programs
written in Pascal are well-organized, understandable and
easy-to-follow. This structure facilitates the development
and subsequent maintenance of large, complex computer
programs.

INTRODUCTION i.

KYAN PASCAL

3. Pascalis designed to encourage good programming habits.
It is a self-documenting and self-structuring language. lts
structure promotes top-down programming and
modularization. Program modules allow the programmer to
create user-defined functions and procedures. This
means that students who learn Pascal also learn how to
program more skillfully and more effectively. These skills
are carried forward and can be applied to other
programming languages.

4. Pascal takes advantage of the latest developments in
computer science and hardware. Programmers are able to
take full advantage of the hardware they are using and are
not constrained by limitations imposed by the programming
language.

These advantages have resulted in Pascal becoming a widely used
language for both elementary and advanced programming. Pascal has
also been selected by the College Entrance Examination Board as the
required language for high school students who seek advanced
placement in college-level computer science courses.

KYAN PASCAL

Kyan Pascal is a full implementation of the Pascal programming
language based on the ISO (International Standards Organization)
standard for Pascal. In addition to supporting all of the standard
functions and procedures, Kyan Pascal includes many extensions to
the language. It is a very powerlul software development tool.

The following notes describe the general structure and some of the
features of Kyan Pascal. More detailed technical information is
presented in later sections of the manual.

Compiler/Assembler

Kyan Pascal is actually two products in one--a Pascal compiler and a
6502 assembler. The Pascal compiler takes Pascal source code and
produces assembly language source code; the assembler takes the
compiler output and produces an executable machine code file.

INTRODUCTION ii.

KYAN PASCAL

The assembler makes two passes through the assembly source code
before producing an executable file. This two-pass approach allows all
forward references to be resolved and results in generation of the
fastest and most efficient machine code possible for the 6502
microprocessor. It also results in an executable file which requires 10 -
20 percent less memory since jumps and jump tabies are not needed.

Speed

Kyan Pascal produces code that runs about twice as fast on a 6502
microprocessor as the best selling Pascal does on a Z80 (assuming
equal CPU clock rates). The benchmark used for this comparison is the
Sieve of Eratosthenes Algorithm and the time required to generate the
first 1,899 prime numbers (execution time: 10 seconds).

Arithmetic Precision

The arithmetic unit used in Kyan Pascal is either a 16 bit integer or 13
decimal digit Binary Coded Decimal. Kyan Pascal uses BCD real
numbers to eliminate round-off errors of binary representations (i.e.,
the result of a simple division is displayed as 3.0 instead of 2.9999999).

Despite the high level of arithmetic precision, floating point benchmarks
show that Kyan Pascal produces code that runs at approximately the
same speed as compilers with 7 to 9 digit precision. Since calculation
speed is proportional to the square of the precision of the real number,
Kyan Pascal is actually running 2 to 4 times faster than programs
offering the equivalent precision.

Linking

In Kyan Pascal, program modules can be linked together by “including”
Pascal or assembly language source files into the main program. When
the main program is compiled, the "included" source code files are
called and compiled along with the main program. This "include” linking
technique is superior to object module linking because it is faster;

does not require two passes of the object modules to produce an
executable file; and, does not introduce non-standard effects on
modules of the Pascal program (i.e., no scope rules, no parameter
checking, and no mechanism for assigning a lexical level to variables).

INTRODUCTION iii.

KYAN PASCAL

Pack And Unpack

PACK and UNPACK are standard procedures in Pascal. Kyan Pascal
automatically packs all structures at the byte level. The only variable
type which is not fully packed is boolean. Because of the poor bit
handling of the 6502 microprocessor, Kyan Pascal does not support
the packing of booleans. Packed and unpacked structures are
identical.

Kyan Pascal's Runtime Library

The Runtime Library is a software module which contains the general
purpose routines used in most Pascal programs. Routines in the
Library include the input/output functions, the floating point package,
the transcendental functions, and set routines.

The purpose of the Runtime Library is to conserve space on the disk.
Rather than appending a copy of all Pascal routines to each program,
the Runtime Library allows many programs to share one copy of the
routines. Since the Runtime Library is approximately 10K in size, you
can see how much disk space you gain if you want to put 3 or 4
programs on the same disk.

NOTE 1: if you want to run your compiled programs
independently of the Kyan Pascal source disk, the Library
must be copied onto your program disk.

NOTE 2: If you are an advanced Pascal programmer and
want to append portions of the Runtime Library directly to
your Pascal program, please contact Kyan Software. We
will provide you with source code for the Runtime Library
for a small additional charge.

The KIX Environment

Kyan Pascal has both a menu-driven user interface and a command-line
interface called KIX!IM, Beginners may want to rely on the menus until
they gain proficiency with ProDOS and Pascal programming. Advanced
programmers will want to by-pass the menus and take advantage of the

INTRODUCTION v,

KYAN PASCAL

UNIX-like command environment of KIX. KIX provides the programmer
with powerful and extensive control over file management. Please see
Chapter VI for more information about KIX.

Error Reporting

Kyan Pascal provides features that enable the programmer to find the
syntax errors that account for over 90% of all compiler failures. Over
100 error messages report not only the type of error found, but also the
line containing the error. In addition, Kyan Pascal does not stop looking
for errors after the first one is found. Although compilation stops, error
detection continues and all errors encountered are listed at the same
time.

KYAN PASCAL: A Product in Evolution

A programming language is different from other types of software.
Unlike a word processing or spreadsheet package, it is extremely
dificult to define all the possible uses of the software. As an analogy,
consider a spoken language such as English or French: How many
different ways are there 1o use the language syntax? You can write a
poem, a letter, or the great (or not so great) American novel. Wili the
language support all of these applications? Will the typewriter you use
have all the symbols and characters you need? Will the readers of your
creation know what all the symbols, characters, and words mean?

We are confronted with similar questions when implementing a
programming language. Jensen and Wirth solved most of the Pascal
syntax problems. But, Kyan must deal with the problem of accurately
interpreting this syntax and correctly compiling a listing which is
meaningful to the computer. We constantly face the question, "What
program construction (legal or illegal) can cause a crash during
compilation or runtime?”

During the development and beta testing of each new product, we
subject it to a battery of test programs to make sure it works properly
under as many conditions as possible. When we release the product,
we have a high level of confidence that it will performin a satistactory
manner.

INTRODUCTION wv.

KYAN PASCAL

However, once the product is in the field, users inevitably write
programs which uncover bugs. When this occurs, the customer calls
our tech support group and points out the problem (sometimes in very
graphic terms). In 99 cases out of 100, we are able to correct the
problem and send the customer a new disk. This fix is then added to
the list of changes which will be released in the next general REVISION
of the compiler (i.e., version 1.1 10 1.2).

Over a period of time, the bugs we find become far more subtle--99% of
the users would never encounter them. But, since we want to ship the
best possible product, we continue to document and fix every bug
identified.

Then, just when the product is "perfect,” the engineers or marketing
staff come up with some new enhancements to the product {i.e., "Let's
increase the size of the symbol table and add some new extensions!”).
We then go through another development cycle and release a product
UPGRADE (i.e., Version 1.3 10 2.0). And, the whole process begins
again.

So, a programming language product like Kyan Pascalis never done--it
is constantly evolving to a better and more refined state. We can never
say with absolute certainty that it is "bug-free.” However, we can say
that when you buy a product from Kyan Software, you receive the
highest quality possible, good technical support, and periodic revisions
and product upgrades at the lowest possible cost.

OTHER REFERENCES

This manual is only an introduction to the basics of Pascal. If you would
like to learn more about the history of Pascal or programming in Pascal
or Assembly language, the following books may be of interest.

Oh! Pascal!, Second Edition
D. Cooper and Michael Clancy, W.W. Norton & Co. 1985

Standard Pascal User Reference Manyal,
D. Cooper, W.W. Norton & Co., 1983

NTRODUCTION vi.

KYAN PASCAL

Programming in Pascal,
P. Grogono, Addison-Wesley Publishing, 1978.

I, A Problem Solving Appr
E.B. Kaufman, Addison-Wesley Publishing, 1982.

Introduction to Pascal, R. Zaks,
Sybex, Inc., 1981

Pascal User Manual and Repor, (ISQ Pascal Standard)
K. Jensen and N. Wirth, Third Edition, Springer-Verlag, 1974,
1985.

Programming a Micro-computer. 6502,
C.C. Foster, Addison-Wesley Publishing, 1978.

6502 Assembly Language Programming,
L.A. Leventhal, Osborne/McGraw-Hill, Inc., 1979

HOW TO USE THIS MANUAL

The KYAN PASCAL MANUAL is directed primarily to the novice and
intermediate-level programmer. Someone who knows little or nothing
about Pascal should read the sections of the manual in strict sequence.
If you know Pascal, you may want to skip the tutorial, but you should
read the section on Kyan Pascal Programming to learn about the
features that are unique to Kyan's implementation. Advanced
programmers may want to refer to the Reference Section for a quick
summary of the commands and their syntax.

The manual is divided into 7 sections and 8 appendices.

Section 1, "Getting Started," is intended for all users. It
explains how to boot Kyan Pascal, make backup copies, and,
most importantly, how to use the Kyan's multiple disks most
effectively with your hardward configuration.

INTRODUCTION vi.

KYAN PASCAL

Section 2, "The Text Editor,” explains the Kyan text editor.
It shows how to select the editor from the Main Menu, create a
source code file, and how to save that file. It provides a detailed
explanation of all the features available with the Kyan Text
Editor.

Section 3, "Kyan Pascal Programming,” explains the
features of Kyan's Pascal compiler. It shows how to call the
compiler and choose the options available to the programmer.
The special features include special graphics capabilities,
including files, and chaining procedures.

Section 4, "The Pascal Tutorial," is a 2-part introduction to
the Pascdl language. It covers 15 lessons that introduce all of
the major elements of the language. Novice users should read
the tutorial carefully.

Section 5, "Assembly Language Programming,”
illustrates how to include assembly code within a Pascal
program. Since this section does not explain assembly
programming techniques, only advanced programmers will
need to read it. The ability to include assembly code, however,
greatly increases the power of your programs.

Section 6, "The KIX Operating Environment® explains all
the commands available to advanced programmers who desire
to use KIX rather than the ProDOS FILER. KiX is an extremely
powerful UNIX-like system that gives an advanced programmer
direct control over the system.

Section 7, "Reference,” is an alphabetical listing of all the
commands, functions, and key words that form the Pascal
language. All programmers will find that its easily accessible
listings provide quick access to information.

The Appendices contain technical information and other useful
reference material which will facilitate programming with Kyan Pascal. It
is worthwhile to spend a few minutes perusing this material.

INTRODUCTION viii.

| GETTING STARTED

Kyan Pascal is designed to run on any Apple Il computer with at least
64K of random access memory. The software uses Apple Computer’s
ProDOS operating system which is included on the disk. This chapter
describes:

* The ProDOS operating system

* Using the ProDOS Filer

* Creating a backup copy of Kyan Pascal

* Configuring Kyan Pascal for your computer.

Kyan Pascal consists of two flippy diskettes. Before you use Kyan
Pascal, you should make backup copies of these disks and
configure the backup copies to meet the specific
requirements of your computer system. This chapter
describes how to do this.

It you are already familiar with ProDOS and the Filer, you
can jump directly to the section entitled "Configuring Kyan
Pascal."”

PROFESSIONAL DISK
OPERATING SYSTEM (ProDOS)

Kyan Pascal uses ProDOS, a powerful operating system developed by
Apple Computer. Disk2, Side2 (D2,S2) of Kyan Pascal contains a
complete copy of the ProDOS operating system and utilities including:.
ProDOS Tutor, Filer, DOS<>ProDOS conversion, Display slot
assignments, Display/set time, and Applesoft BASIC.

If you are not familiar with ProDOS, we encourage you to stop reading
the manual at this time and boot this disk (D2,S2). Explore the Filer and
other system utilities. You will find the ProDOS Tutor to be particularly
informative. When you are finished, please return 1o this manual.

If you want to learn more about the capabilities and features of ProDOS,
you should consult a ProDOS Users Manual. If you expect to develop

GETTING STARTED |-1

ProDOS AND CONFIGURING KYAN PASCAL

ProDOS-based programs, you may also want to refer to the ProDOS
Technical Reference Manual.

ProDOS PATHNAMES

In ProDOS, every disk (volume) must have a name. The volume name
is assigned when you format the blank disk. Similarly, each file on a disk
must have a filename; it is assigned when you create the file. Files can
be grouped together in directories or subdirectories. Directory names
are defined using a special command in the ProDOS Filer.

Volume, directory, and filenames can be up to 15 characters long. The
first character must be a letter and succeeding character must be
letters, numbers, or periods. ProDOS does not allow spaces or
punctuation marks (other than periods) to be used.

In ProDOS, whenever you see the prompt, you are being asked to
enter the pathname of the next file you want to load and run. The term
“*pathname" is used to describe the path which the computer must
follow to find the particular file.

A Pathname consists of a volume name; zero, one or more directory
names; and a filename; each separated by a slash (*/*). The pathname
begins with a slash, followed by the volume name (i.e., the name you
have assigned to your diskette), a slash, a directory or subdirectory
name(s) (if any), and the filename (i.e., the name of your program or file).
In other words, to access a file you must enter the pathname:

/your.volume.name/any.directory.names/your.filename

For example, if you wanted to load the file named SAMPLE on you disk
named TRIAL, you would enter */TRIAL/SAMPLE" and press
<RETURN>. If the file was located in a directory or subdirectory, the
directory name(s) would be inserted between the volume name and the
filename. '

In Kyan Pascal, you will be asked to specify a pathname whenever you
want to load or save a file. At these prompts, you should follow the
instructions outlined above. To learn more about pathnames, please

refer to the ProDOS Users Manual.

3ETTING STARTED (-2

ProDOS AND CONFIGURING KYAN PASCAL

NOTE: The important thing to remember is that the pathname must
lead to a volume and a file that the system can locate. If you try to use
an invalid pathname, you will either get an error message (e.g., "Volume
Not Found" or "File Not Found") or the program will crash. Pathnames
are important regardless of whether you have a single or multiple disk
drive system.

ProDOS Filer

When you boot Kyan Pascal (Disk 1, Side 1), the ProDOS and Kyan
Software copyright screens appear, followed by the Kyan Main Menu.

Prefix: /Kyan Pascal/

KYAN PASCAL MAIN MENU

Option Description

ED Editor

PC Pascal Compiler

FILER ProDOS Filer

KiX KIX Command Menu
INTRO Introduction to Kyan Pascal
QUIT Exit Kyan Pascal

Press [OPEN APPLE] - ? for HELP
Press <RETURN> to enter a command

To select an option, you must press <Return> followed by the name
of an option. If you want to learn more about Kyan Pascal, select
INTRO. If you want to begin writing or editing a program, select ED. If
you want to compile a source code file, select PC. Or, if you want to
perform a file management task, select Filer.

NOTE: For the moment, ignore the KIX option. The KIX commands
are for advanced programmers only. if you are a beginning Pascal
programmer, don't get yourself confused by trying to learn too many
things at once. Kyan Pascal can be run exclusively from menus; and
until you are comfortable with Pascal programming, don't bother with
the KIX environment. When you are ready, read Section VI which
explains KIX.

GETTING STARTED 1-3

ProDOS AND CONFIGURING KYAN PASCAL

For now, let's select the Filer. The ProDOS Filer menu abpears onthe
screen.

Apple's ProDOS System Ulilities

? - Tutor

F - File commands

V - Volume commands

D - Configuration Defaults
Q - Quit

Please Select a Command

The Filer contains ProDOS disk management utilities. These utilities
are used to copy or delete files from a disk, rename volumes or files,
and perform other file management functions. If you are not already
familiar with the ProDOS Filer, we recommend that you take a few
minutes to examine the on-screen tutorial and each of the Filer options.
These will give you a good overview of the utilities available to you
through the ProDOS Filer. Press ? to access the Tutor. You can retum
to the main Filer menu at any time by pressing the <ESC> key.

When you are ready to leave the ProDOS Filer, select the Quit option
on the main menu. You will then be returned to the system prompt (%).
Then type MENU and you will be returned to the Kyan Main Menu.

Remember, you can return to the Filer whenever you see the prompt
(%). Simply type “Filer" and press <Return>.

SETTING STARTED -4

ProDOS AND CONFIGURING KYAN PASCAL

QUICK GUIDE TO SELECTED
ProDOS UTILITIES

The following instructions will help you get started with Kyan Pascal.
They explain how to:

* Copy a disk

* Format a blank disk

* Copy afile

* Delete afile

* View the disk (volume) directory

Read these sections carefully and follow the instructions that are
relevant to your disk drive configuration. You are going to make backup
copies of the Kyan Pascal disks.

Copying a Disk (Volume)

You should immediately make a backup copy of your write-protected
Kyan Pascal source disks. Use these backup copies whenever you are
programming. That way, if the contents of a disk are accidentally
destroyed, you will still have your source disk untouched. (Please refer
1o the enclosed Copyright Notice and License Agreement fora
description of the limitation on the use of backup copies.)

The following instructions explain how to make a backup copy of a disk.
When using the Copy function, you do not need to use a pre-formatted
disk. The Copy function does this for you automatically.

GETTING STARTED 1-5

ProDOS AND CONFIGURING KYAN PASCAL

Copying A Disk

1. If you are not already in the ProDOS Filer, type Filer and press
<Return>. This will load the ProDOS Filer.

2. Press V (Volume Commands).
3. Press C (Copy a Volume).

4. Enter the appropriate slot/drive numbers when prompted or accept
the slot/drive defaults. (For more information on slot/drive numbers,

consult a ProDOS Users Manual).

5. Put the Kyan Pascal disk (Disk1,Side1) and destination (new) disks
in the appropriate drives. Press <Return>. (If you have a one-drive
system, first put the Kyan Pascal disk in the drive first and then get
ready to do a bit of disk swapping. Messages at the bottom of the
screen will tell you when to switch disks.)

6. The blank disk will automatically. be formatted and assigned the
volume name /KYAN.PASCAL. You can choose a different volume
name, but we suggest that you keep /KYAN.PASCAL. Press
<Return>.

7. When the copy is complete you will see COPY COMPLETE onthe
lower left-hand part of the screen. Remove the original Kyan Pascal
source disk, flip it over,and make a copy of Side 2. When finished,
remove the disk and store it in a safe place. Label and set aside you
backup copies. Repeat this procedure to make a backup copy Kyan's
Disk2. (Warning: Do not try to duplicate Kyan's “flippy" disk format.
Use a separate disk for each side of the Kyan disks).

8. Press the <Esc> to leave 'Copy a Volume'.
9. Press <Esc> to leave 'Volume Commands'.

10. Press Qto exit ProDOS Filer. You will return to the Kyan system
prompt. Type MENU to return to the Kyan Main Menu.

CETTING STARTED 1-6

ProDOS AND CONFIGURING KYAN PASCAL

Formatting a Disk

You should always keep several pre-formatted ProDOS disks handy.
Use them to store the Pascal programs you write.

Formatting a Disk

1. If you are not already in the ProDOS Filer, type Filer and press
<Return>.

2. Press V (Volume Commands).
3. Press F (Format a Volume).

4. Place your blank diskette in any available drive. If you have a one-
drive system, remove the Kyan Pascal disk.

5. Enter the appropriate slot/drive numbers when prompted or accept
the slot/drive defaults. (For more information on slot/drive numbers,
consult a ProDOS Users Manual).

6. Type a name for the volume or accept the default name and press
<Return>. (Remember the volume name; you'll need it later to specify
the pathname).

7. When the formatting is done, you will see FORMAT COMPLETE in
the lower left-hand area of the screen. Remove the disk and label it with
its new volume name.

8. Press <ESC> to exit 'Format a Volume'.

9. Press <ESC> to exit 'Volume Commands'.

10. Press Q to exit ProDOS Filer. You will be returned to the Kyan
system prompt. Type MENU to return to the Kyan Main Menu.

GETTING STARTED -7

ProDOS AND CONFIGURING KYAN PASCAL

Copying a File

To copy a file from one disk to another, use the "Copy File" commands
found in the ProDOS Filer.

Copying A File

1. If you are not already in the ProDOS Filer, type Filer and press
<RETURN>.

2. Press F (File Commands).

3. Press C (Copy Files).

4. ProDOS will prompt you to specify the pathname of the file you want
copied (e.g., COPY FROM). It will then prompt you to specify the
pathname of the new file (e.g., COPY TO). For example, if you want to
copy the Kyan Runtime Library from Side 2 of the Kyan Pascal disk onto
your own disk: first, type /KYAN.PASCAL/LIB and press
<Return>; then /Your.Disk/LIB and <Return>.

5. When the copying is finished you will see COPY COMPLETE in the
lower left-hand part of the screen.

6. Press <ESC> to exit "Copy Files".
7. Press <ESCs> to exit "File Commands”.

8. Press Qto exit ProDOS Filer. You will be returned to the Kyan
system prompt. Type MENU to call the Kyan Main Menu.

SET1ING STARTED 1-8

ProDOS AND CONFIGURING KYAN PASCAL

Deleting a File

To delete a file from a disk, you must use the "Delete File" command
found in the ProDOS Filer. Always be absolutely certain that you really
want to delete a file before you do it. Once a file is deleted, it is gone
forever.

Deleting A File

1. If you are not already in the ProDOS Filer, type Filer and press
<Return>.

2. Press F (File Commands).
3. Press D (Delete File).

4. ProDOS will prompt you for the pathname of the file you want
deleted. Type the pathname.

5. Put the disk containing the file to be deleted in any available disk
drive and press <Return>.

6. When the file is deleted, you will see DELETION COMPLETE in the
lower left-hand corner of the screen.

7. Press <ESC> to exit "Delete File".
8. Press <ESC> to exit "File Commands”.

9. Press Q lo exit the Filer. You will be returned to the Kyan system
prompt. Type MENU to return to the Kyan Main Menu.

GETTING STARTED 1-9

ProDOS AND CONFIGURING KYAN PASCAL

Listing a Disk Directory

When you want to see what files are contained on a disk, you must use
the “List Directory* command found in the File Command section of the
ProDOS Filer. Try this series of commands with a Kyan Pascal Back-up
disk.

Listing A Disk (Volume) Directory

1. Type Filer and press <Return>.

2. Press F ("File Commands").

3. Press L ("List ProDOS Directory").

4. Place your disk in any available drive. (If you have a one-drive
system, remove the Kyan Pascal disk, unless, of course, you want a
directory of the Kyan Pascal disk).

5. Enter the pathname for the volume (e.g., "/Tutorial®) and press
<Return>. A disk directory will be displayed on the screen.

6. Press <ESC> to exit the disk directory.
7. Press <ESC> to exit "File Commands”.

8. Press Qo exit ProDOS Filer. You will be returned to the Kyan
system prompt. Type MENU to return to the Kyan Main Menu.

CONCLUSION

If you are new to ProDOS, this section should have provided you with
enough information to begin writing and saving your Pascal source
code files. If you still feel a little confused, reread the section, or check
your ProDOS manual.

GETTING STARTED 1-10

ProDOS AND CONFIGURING KYAN PASCAL

CONFIGURING KYAN PASCAL

Kyan Pascal is designed to run on the full spectrum of Apple Il systems.
The software will work on an Apple I1+ with a single disk drive as well as
on an enhanced Apple lle with extra RAM and a hard disk drive.

To insure maximum performance with your hardware, it is necessary to
select a text editor and make some minor configuration changes to the
Kyan Pascal disks. There are two hardware varables which affect the
configuration of the software:

isk Driv nfigurati
Case 1: Single disk drive system
Case 2: Two disk drive system
Case 3: Mass storage system (i.e., Unidisk 3.5 or Hard disk)
le Il M n reen
Case A: Apple lic or Apple lle with 80 column card.
Case B: Apple Il or li+ with 80 column card.
Case C: All others with 40 column screens
The following sections describe the configuration steps which must be

followed for each case. Please follow the instructions which apply to
your system.

Case 1: Single Disk Drive System

Setting-Up

Step 1. If you have not already done so, make backup copies of your
Kyan Pascal disks. Do not attempt to modify your original
Kyan Pascal source disks.

Step 2. Boot Disk 1, Side 1 (D1,S1). Select the Filer option from the
Main Menu. Then, remove (D1,51) and insert Disk 1, Side 2 (D1,S2) in
the drive.

GETTING STARTED |-11

ProDOS AND CONFIGURING KYAN PASCAL

Selecting the Text Editor (Single Drive System)

The following instructions describe how to select the Text Editor which
is designed for your system and delete the ones which are not needed.

Case A (80 column lle or lic)

a. Press F for File commands

b. Press D for Delete files

c. Enter: /Kyan.Pascal/E40 <Return>
d. Enter: /Kyan.Pascal/ED2 <Return>
e. Press <Esc> twice and Quit the Filer

f. Proceed to "Using Kyan Pascal".

Case B (80 column i or Il+)

Press F for File commands

Press D for Delete files

Enter: /Kyan.Pascal/E40 <Returns>

Enter: /Kyan.Pascal/ED <Return>

Press <Esc> to File commands menu
Press R to Rename files

Enter: /Kyan.Pascal/ED2
followed by: /Kyan.Pascal/ED

Press <Esc> twice and Quit the Filer
Proceed to "Using Kyan Pascal”.

Case C_(40 column Apples)

Press F for File commands

Press D for Delete files

Enter: /Kyan.Pascal/lED2 <Return>

Enter: /Kyan.Pascal/ED <Return>

Press <Esc> to File commands menu
Press R to Rename files

Enter: /Kyan.Pascal/E40
followed by: /Kyan.Pascal/ED

Press <Esc> twice and Quit the Filer
Proceed to "Using Kyan Pascal”.

T @~eooow

T @meooDp

GETTING STARTED [-12

ProDOS AND CONFIGURING KYAN PASCAL

Using Kyan Pascal (Single Drive System)

When you want to program with Kyan Pascal, first boot the system with
(D1,S1). When the Kyan Main Menu appears, you can call the ProDOS
Filer, INTRO (the introduction to Kyan Pascal), or KIX (the KIX command
summary). You can also change your mind and exit Kyan Pascal by
selecting the Quit option. If you want to begin programming, however,
you need to switch disks.

To begin programming, remove (D1,51) from the disk drive and insert
(D1,82). This disk contains all the Kyan Pascal files needed to write,
compile and run Pascal programs. The disk has approximately 55K
available for storage of your programs and source files. It's a good idea
to make several copies of (D1,52) and keep them handy; that way, if
you run out of room on a disk, you'll have another one ready.

(D1,S2) does not contain a copy of the Filer. Therefore, if you want to
use any of the Filer commands, you must: return to the system prompt;
re-insert disk (D1,S1) in the drive; and, type Filer. When you are
finished, Quit the Filer and you will again see the system prompt. To
continue working with Kyan Pascal, replace (D1,51) with (D1,52) and
type ED or PC.

Using Kix Commands (Single Drive System)

Using KIX with a single drive system requires some disk swapping. You
can call a KIX command whenever you see the system prompt. Here's
how:

1. Place the KIX disk (D2,51) in the disk drive.

2. Enter the full pathname (e.g., /KIX/BIN/Command) of the
command plus options and pathnames. Press <Return>.

3. KIX will look for the file(s) or volume you have specified. It will
not be found (since the KIX disk is in the drive) and so you will
be prompted to remove the KiX disk and insert the disk you
have specitied.

4. You can repeat this process as often as necessary. When
finished with KiX, insert (D1,S2) into the drive and resume
programming.

GETTING STARTED |-13

ProDOS AND CONFIGURING KYAN PASCAL

Case 2: Two Disk Drive System

Setting-Up

Step 1. If you have not already done so, make backup copies of your
Kyan Pascal disks. Do not attempt to modify your original
Kyan Pascal source disks.

Step 2. Boot Disk 1, Side 1 (D1,S1) in drive 1. Select the Filer option
from the Main Menu. Then remove (D1,S1) and insert Disk 1,
Side 2 (D1,S2) in drive 1.

Step 3. Rename (D1,S2) using the Rename volume command in the
Filer.

a. Press YV for Volume Commands

b. Press R for Rename volume

c. Enter: /Kyan.Pascal followed by: /User

d. Press <Esc> twice to return to the main Filer menu.

Step 4. Remove (D1,S2) from drive 1 and place it in drive 2. Insert
(D1,S1) into drive 1.

Selecting a Text Editor (Two Drive System)

The following instructions will help you select the proper Text Editor for
your system.

A lumn lle or I}

Do nothing! Kyan Pascal is already preconfigured for your
system. Proceed to "Configuring the User Disk".

Case B (80 column Il or Il+)

a. Press F for File commands

b. Press C for Copy files

c. Enter: /User/ED2 followed by: /Kyan.Pascal/BIN/ED.
d. Press <Esc> twice and proceed to the next section.

GETTING STARTED i-14

ProDOS AND CONFIGURING KYAN PASCAL

Case C_(40 column Apples)

a. Press F for File commands

b. Press C for Copy files

c. Enter: /User/E40 f{followed by: /Kyan.Pascal/BIN/ED.
d. Press <Esc> twice and proceed to the next section.

Configuring the User Disk (Two Drive System)

The disk now labelled /User (D1,S2) will be the disk that you use to
store your programs. To provide the maximum amount of storage
space on the disk, you should delete the following files from the disk.

AS PC MENU
ED E40 ED2

To delete these files:

. Press F for File commands

. Press D for Delete Files

Enter: /User/AS; press <Return>

. Repeat this process until all of the above files are deleted.
. Press <Esc> and Quit the Filer.

cooTN

The files remaining on the disk {/User) are the Kyan Pascal Runtime
Library and the "include" files described in Chapter 3 of this manual.
These files will be needed to run your Pascal programs. It's a good idea
to make several copies of your User disk (D1,52) and keep them handy;
that way, if you run out of room on a disk, you'll have another one ready.

Using Kyan Pascal (Two Drive System)

You have now configured a Kyan Pascal program disk (D1,51) which
contains all of the Kyan Pascal system files and a User disk (D1,52)
which contains the Runtime Library (LIB) and Pascal “include” files.
Soon, this second disk will also contain your Pascal program files.

When you want to use Kyan Pascal, insert (D1,51) in drive 1 and boot
the system; keep this disk in drive 1 throughout your programming
session. Put a copy of (D1,S2) in drive 2; this disk may be swapped as

GETTING STARTED |-15

ProDOS AND CONFIGURING KYAN PASCAL

required to access programs you have developed and saved on
different disks.

IMPORTANT: Each time you boot the Kyan Pascal system, you must
reset the working directory from the default (/Kyan.Pascal) o the
directory you will be using on your user disk (e.g., /User). You can do
this easily using a KIX command which is on (D1,51). When the Kyan
Main Menu appears, press <Return> followed by the KIX command
CD and the name of the new working directory. If you are not using a
separate directory on the user disk, then you can simply enter:

% CD /User

If you forget to change the working directory, your programs will not
compile. The reason for this is that, during compilation, the compiler
creates and saves an intermediate assembly language file in the
working directory. Since the disk containing the default working
directory (/Kyan.Pascal) is full, a DISK FULL error will occur followed
by cancellation of compilation.

Using KIX Commands (Two Drive System)

Using KIX with a two drive system requires some disk swapping. You
can call a KIX command whenever you see the system prompt. Here's
how:

1. Place the KiX disk (D2,S1) in drive 1.

2. Enter the pathname of the KIX command you want
(e.g., /KIX/BIN/Command) along with options and
pathnames. Press <Return>.

3. KIX will find the file(s) or volume you have specified. If not
found, KIX will prompt you to load the required disk.

4. You can repeat this process as often as necessary. When
finished with KIX, replace the KiIX disk in drive 1 with (D1,51)
and resume programming. :

In time you will probably find KIX to be far more powerful and convenient
than the ProDOS Filer. When this occurs you can delete the copy of
the Filer on your Kyan Pascal program disk (D1,S1) and replace it with
the most frequently used KIX commands. Using the KIX RM and CP

GETTING STARTED 1-16

ProDOS AND CONFIGURING KYAN PASCAL

commands you can quickly delete the Filer and transfer the following
KIX commands to the program disk.

CAT CcD CFG
CcP LPR LS
PWD RM SD

You can then call any of these KIX commands whenever you see the
system prompt. You will only need to swap in the KIX disk when you
want to use one of the other KIX commands.

Case 3: Mass Storage System

Setting-Up and Configuring Kyan Pascal

Step 1. !f you have not already done so, make backup copies of your
Kyan Pascal disks. Do not attempt to modify your original
Kyan Pascal source disks.

Step 2. Boot Disk 1, Side 1 (D1,S1) in your floppy disk drive. Select
the Filer option from the Main Menu.

Step 3. Press F for File commands
Step 4. Press C for Copy files

Step 5. Enter: /Kyan.Pascal/ProDOS
followed by: /Profile/ProDOS

Note: If you are using a Unidisk or Sider hard disk, replace
the name PROFILE with the appropriate volume name.

Step 6. Enter: /Kyan.Pascal/KIX.System
followed by: /Profile/Kix.System

Step.7. Escape to File Commands Menu. Press M for Make Directory
Step 8. Enter: /Profile/BIN

GETTING STARTED 1-17

ProDOS AND CONFIGURING KYAN PASCAL

Step9. Escape to File Commands Menu. Press C for copy files.

Step 10. Enter: /Kyan.Pascal/BIN/=
followed by: /Profile/BIN/=

Step 11. When the copy is complete, remove (D1,51) from the drive
and insert the KIX disk (D2,S1).

Step 12. Enter: /KIX/BIN/= plh L4 T D
followed by: /Profile/BIN/= KIX QUIT

Step 13. When the copy is complete, remove (D2,S1) from the drive
and insert the User disk (D1,S2).

Step 14. Using the D command, delete the following files:
7

7 2 ke

STDLIBS AS PC MENU
Step 15. Selecting a Text Editor.

Case A: 1. Use the Delete command to remove ED, E40, and
ED2 from the disk. (Another copy of ED has already
been saved on the disk).

Case B: 1. Use the Delete command to remove ED and E40
from the disk.
2. Use the Rename command to rename the
remaining editor from ED2 to ED.

Case C: 1. Use the Delete command to remove ED and ED2
from the disk.
2. Use the Rename command to rename the
remaining editor from E40 to ED.

Step 18. Escape to File Commands Menu. Press C for copy files.

Step 19. Enter: /Kyan.Pascal/=
followed by: /Profile/BIN/=

Note: As files transfer from (D1,S2) to the disk, you will be
asked if you want to replace files with the same name. You
should respond in the affirmative.

ot ’('M

SETTING STARTED i-18

ProDOS AND CONFIGURING KYAN PASCAL

Using Kyan Pascal and KIX Commands
(Mass Storage System)

With a mass storage device, you have full access o all the capabilities of
Kyan Pascal and KIX without any disk swapping. All of the Kyan Pascal
program files and all of the KIX commands are stored in the BIN directory
on your disk drive.

To load and run Kyan Pascal from the ProDOS Quit screen or ProDOS
prompt, enter: /Profile/KIX.System . To load and run Kyan Pascal
from the BASIC prompt, enter: -/Profile/Kix.System .

To call KIX commands, simply enter the command along with options
and pathnames anytime you see the system prompt.

CONCLUSION

In this section you have learned about the ProDOS operating system
and how to use the Filer. You have also customized your backup
copies of Kyan Pascal so that you will enjoy maximum software
performance on your computer system.

The next two sections describe the functions and features of the Kyan
Pascal Editor and Compiler.

GETTING STARTED 1-19

ProDOS AND CONFIGURING KYAN PASCAL

THIS PAGE LEFT BLANK FOR YOUR NOTES

SETTING STARTED 1-20

I THE EDITOR

OVERVIEW

Kyan Pascal includes a full-screen, insert mode editor that you can use
to write and edit programs. Insert-mode editing requires that you place
the cursor where you want to enter text and begin typing. If you are
editing existing text, place the cursor where you want to begin inserting
text and star typing; if you are entering new text, just begin.

This section explains how to use the text editor to:

* Enter the EDITOR

* Create afile

* Edit an existing file

* Use the cursor control commands to control printing
* Delete and move lines of program text

* Use the special functions menu

The Editor has a series of HELP screens to assist you. To look at a
HELP screen, simply type [Open-Apple}-? and a screen will appear.
[Note: The commands used to access HELP screens vary slightly for
the Apple Il and Il+.]

Note: The Kyan Pascal compiler is fully compatible with any text editing
program which generates standard ASCII text files. You can therefore
use your favorite text editor (e.g., Appleworks) to write and edit
programs.

THE EDITOR 1I-1

THE EDITOR

SOURCE CODE VERSUS OBJECT CODE FILES

When you write a Pascal program using the Editor, you create a text file
which is known as source code. When you name a source code file,
you should append a ".P" to the filename to indicate that it is a Pascal
source code file. When this file is compiled, a machine code file is
created which is known as pbject code.

The object code file is saved on the disk along with your source code.
The object code file has the same filename as the source file but
without a ".P". If you look at a disk directory, you will see both the
source code file ("YourProgram.P") and the object code file
("YourProgram"). Later, when you want to run the program, be sure to
specify the object code and not the source code file.

ENTERING THE EDITOR

When you start Kyan Pascal, you will see the Apple ProDOS Copyright
screen and the Kyan Pascal Copyright screen. After a few seconds,
you will see the Main Menu screen. The first command on the menu is
ED. You will use this command to enter the EDITOR and begin writing
the program.

What happens next depends upon whether you are creating a new file
or editing a file that already exists.

T-EEDITOR II-2

THE EDITOR

CREATING A FILE

Once you have entered the Editor, the message appears:
Pathname?

At this point, you can enter the pathname identifier of any file -- evenif it
doesn't exist. You must remember, however, 1o include the volume
name, i.e., the name of your disk, in the pathname. Since this is your
first Pascal file, enter the Volume name of your disk and the filename
Trial.P. The full pathname should be something like:

/YourVolumeName/Trial.P

Because your file doesn't really exist yet, the editor will respond with
the message

FILE NOT FOUND.
ANEW FILE WILL BE CREATED WHEN SAVED.
PRESS SPACE BAR TO CONTINUE.

When you press the space bar, the screen will go biank and the blinking
cursor will appear. All text that you enter will now become part of your
program file. Press <RETURN> at the end of each line of program
text. When you have finished writing the program, press <ESC> and
then either the S, X, or Q key. You don't need to do this now since
you haven't written a program yet.

For practice, however, try entering the following program. Don't bother
saving or even trying to run it. Just make sure that you can enter it.

PROGRAM Trial(Output,Input); <RETURN>
<RETURN>
BEGIN <RETURN>

Wiiteln(Hi, This is Kyan Pascal.’) <RETURN>
END. <RETURN>

THE EDITOR II-3

THE EDITOR

EDITING AN EXISTING FILE

To edit an existing file, follow the same procedure for creating a file.
First select ED from the Main Menu. This time, however, when the
screen requests a pathname, enter the name of a file that already
exists. Remember to type the full pathname of the file you wish to edit,
e.g., VolumeName/OldFileName.P. Your existing file will appear on
the screen ready for whatever changes you wish 10 make.

The Kyan text editor is an insert editor. Whenever you enter text, it
appears where the cursor is positioned. i text exists after the cursor, it
will be moved back to make room for the new text. As you will see, it is
important to position the cursor correctly when you edit the text of a
program. To make editing text easier, Kyan Pascal has a number of
control-sequence commands that let you

* position the cursor
- * delete text
* move blocks of text
* print brackets (for the APPLE Il and APPLE Il+)
* use the TAB key (only with an 80 column editor)

A control-sequence command is executed by pressing the
<CONTROL> key while simultaneously pressing the appropriate letter
key. The keys must be pressed at the same time -- they are not
entered one after the other. For example, <CONTROL>-S means
that you should press the <CONTROL> key and the letter S at the
same time.

THE EDITOR II-4

THE EDITOR

Cursor Movement Commands

Ten different control-sequence commands let you move the cursor to
different positions in the text.

<CONTROL> -S moves the cursor 1 space back (to the left)
<CONTROL> -D moves the cursor 1 space forward (to the right)
<CONTROL> - A moves the cursor 1 word back (to the left)
<CONTROL> - F moves the cursor 1 word forward (to the right)
<CONTROL> -E moves the cursor 1 line back (up)
<CONTROL> - X moves the cursor 1 line forward (down)
<CONTROL> -R moves the cursor 20 lines back (up)
<CONTROL> -C moves the cursor 20 lines forward (down)
<CONTROL> -T moves the cursor to the TOP of the file
<CONTROL> -V moves the cursor to the BOTTOM of the file
Try using these commands to move the cursor around a file. At this
point it doesn't matter if you are actually writing a program. Just enter
text and get comfortable moving the cursor around the screen.

Many Apple computers have ARROW cursor control keys. If your
keyboard does, they may also be used to move the cursor. If you hold
an ARROW key down, the cursor will continue to move in the direction
indicated by the ARROW until you release the key.

if you are editing and cannot remember a cursor control command, just
press [Open-Apple]-?. A HELP screen will appear which lists all the

commands. [Note: If you are using an Apple Il or ll+, press <ESC> and
then "?" for the cursor control HELP screen.]

THEEDITOR Ul-5

THE EDITOR

Deleting Text

To delete text, use one of the three delete commands.
<CONTROL> -G deletes the character the cursor is on
<CONTROL> - Q deletes the character to the left of the cursor
<CONTROL> - Y deletes the line the cursor is on

If your Apple has a <DELETE> key, it deletes the letter to the left of
the cursor and is identical to the <CONTROL> - Q sequence.

Block Commands

You may find that you want to delete, copy, or move an entire section of
your program. Or, you may want fo cut a block of text and save it as a
separate file. Each of these activities is accomplished with "cut and
paste” commands. Each activity starts by defining or "cutting” a block
of text using the <CONTROL> - O command. Then, depending on
the desired end, the block is “pasted” in the location(s) specified using
the <CONTROL> - P command.

Just for practice, enter some text in the file. If you are already working in
a file, decide what text you want to delete, copy, or move. Don't worry
that this is not a real program. Remember that you are just learning how
to use the text Editor commands. Once you have text printed on the
screen, try some of the following commands.

CUTTING A BLOCK OF TEXT

1. Move the cursor to the beginning of the block you want to cut.
2. Press <CONTROL> - O. (The letter, not the number)
3. Move the cursor to the end of the block. The block will be

highlighted as you move the cursor. [Note: The cut buffer will
hold up to 2K of text.]

THEEDITOR li-6

THEEDITOR

4. Press <CONTROL> - O again. The block will disappear, but
don't worry. The block is stored in the computer's memory.

DELETING A BLOCK OF TEXT

Iif you only want to delete the block, you are finished. Inthe preceeding
step, the block has been cut from your text file and stored in a memory
buffer. If you don't want it anymore, just leave it there! The bufter will
be erased when you perform the next "cut” command or when you exit
from the editor.

COPYING A BLOCK OF TEXT

1. Copying the block consists of pasting the cut block in one or more
locations. Press <CONTROL> - P. This will paste a copy of the
block back in its original location.

2. Move the cursor to the next place where the block should be
pasted and press <CONTROL> - P. Another copy of the block
will be printed there.

3. Repeat the paste procedure as often as you want.

MOVING A BLOCK OF TEXT

1. Moving the block consists of pasting the cut block in anew
location. Move the cursor to the location where you want the
block pasted.

2. Press <CONTROL> - P. The block will reappear in the new
location.

THE EDITOR Il-7

THE EDITOR

SAVING A BLOCK OF TEXT

1. Press <ESC> to access the Special Commands Menu. Select
option "L". (Note: Special Commands are explained in the next
section.)

2. When prompted, enter the pathname of the file where you will save
the cut. Press <RETURN> and you will see this Cut Pathname
displayed at the top of the screen.

3. Press <ESC> to return to the Editor.

4. Press <CONTROL> -L. The cut block will be saved with the
file name you specified.

Try cutting and pasting text until you are comfortable with the
procedure. You should become skilled enough so that you don't worry
about losing text every time you try to move lines of your program.

Other Editor Features
Underscore Character and Brackets

If you have an Apple Il or Apple I+, your keyboard does not have an
underscore ("_") character or brackets (' and]'). You will need these.
You can simulate an underscore character by pressing <CONTROL> -
SHIFT - P. To enter a left bracket, "[", press <CONTROL> - N

To enter a right bracket, "]", press <SHIFT> - M

Tab

The 80 column Editor has a <TAB> function that indents the line 8
characters each time you press it.

THE EDITOR 1I-8

THE EDITOR

SPECIAL EDITOR COMMANDS

Whenever you are entering program text, you can access the SPECIAL
COMMANDS menu. These commands allow you to change
characteristics of the program without losing the data you have already
written. Don't worry if you need to call the SPECIAL COMMANDS
menu while you are in the middle of typing a program. Your program will
still be there when you return from doing whatever you decide to do.

To enter the SPECIAL COMMANDS menu, press <ESC>. Tryit. You
won't lose the text you are working on. Press <ESC> again. The text
of your program reappears on the screen. You can keep pressing
<ESC> to alternate between your program text and the SPECIAL
COMMANDS menu.

The SPECIAL COMMANDS menu allows you to make changes that
affect the entire program. You can:

* Get HELP

* Change the pathname of the file you are working on
* Insert another file in the text

* Go to a specific line number in your program

* Change a string of characters in your program

* Find a string of characters

* Save your text and leave the Editor

THE EDITOR 11-9

THE EDITOR

Special Commands Menu

When you are editing text, you access the special functions menu by
pressing the <ESC> key. The following menu appears on the screen.

SPECIAL EDITOR COMMANDS

Pathname: Editor.Filename
Cut Path: Cut.Buffer.Filename

COMMANDS DESCRIPTION

X Save File and Exit Editor

S Save File and Resume Editing
Q Discard File and Exit Editor

P Change Editor Pathname

L Write Cut Buffer to Cut Path

| Insert File Into Editor File

G Go To Line Number

A Define “A" String

B Define "B" String

Cc Find/Replace A Strings with B Strings
"A" String is :

"B" String is :

Press <ESC> to resume editing
Press [OPEN APPLE] - ? for HELP

To select an item from the menu, press the key that represents the
selection.

For the present, we'll skip the Save commands. If you want to see the
Help menu, press [OPEN APPLE] - ?. The other commands are
explained below. Each function description has a PROCEDURE that
ilustrates how to use the function. To try these procedures, you must
have some text entered on the Editor screen. Since you won't be

THE EDITOR W1-10

THE EDITOR

running a program, for the time being, you can use any text you want
when you try the procedure.

CHANGE PATHNAME
This command lets you rename the file you are working on. You can

change just the filename, or you can also change the volume if you are
going to save the file on a different disk

CHANGING A PATHNAME

1. Press P. The following request will appear:
NEW PATHNAME (BLANK TO QUIT) ?

2. Type the new pathname (/VolumeName/Filename). If you want to
quit this process and leave the Pathname unchanged, just press
<RETURN>.

3. After entering the new pathname, press <RETURN>. The new
pathname will appear at the top of the screen.

SAVING THE CUT BUFFER

This command lets you save the text stored in the cut buffer as a file.

SAVING THE CUT BUFFER

1. Press L. The following request will appear:
NAME OF CUT DESTINATION FILE.
2. Type the name of the new file and press <RETURN>.
3. This name will appear at the top of the Special Commands Screen.

4. Return to the Editor and cut the text you want to save in the new
file.

5. Press <CONTROL>-L. The text in the cut buffer will be saved in
the new file.

THEEDITOR Ii- 11

THE EDITOR

INSERT FILE

This command lets you insert another file into the current program.

INSERTING A FILE

1. If the Special Commands Menu is on the screen, press <ESC> and
return to your program.

2. Move the cursor to the point in your program where you want the
file inserted.

3. Press <ESC> to return to the Special Commands Menu.
4. Press . The following request will appear:

PATHNAME OF FILE TO INSERT
5. Type the pathname of the file you want to insert and press

<RETURN>. To cancel the process press <RETURN> without
entering a pathname. You will be returned 1o your program.

GOTO line number

This command lets you move the cursor immediately 1o a line number in
the file which you specify. The GOTO command is useful when you are
working on a large program and you need to position the cursor.

REMEMBER: Line numbers should not be entered as part of the
program; the number specifies the line on the editor screen or on the
printed listing of the program file.

GOTQ

1. Press G. The following request will appear: LINE NUMBER ?
2. Enter the number of the line you want the cursor moved to.

3. Press <RETURN>. Your program will appear on the screen with
the cursor positioned on the line you have specified.

THE EDITOR Il - 12

THE EDITOR

CHANGE STRING

This command lets you change some or all occurrences of a string used
in your program. This command is equivalent to the "Search and
Replace” function in other text editors. For example, you might want to
change the expression A+B*C to A+B*D.

The Change String function distinguishes between upper and lower
case letters. For example, a search for "CAT" will not find the word
"cat". The maximum length of the string is 40 characters.

CHANGING STRINGS

1. Press A. The screen will display: A:

2. Type the string you want to replace, exactly as it appears in the
program, and press <RETURN>.

3. At the bottom of the screen, you will see the string appear:
"A" String is:
4. Press B. The screen will display: B:

5. Enter the new string to replace the old one and press
<RETURNS>.

6. At the bottom of the screen, the new string appears:
"B" String is:
7. Now press C. The following prompt will appear:

CHANGE ALL STRINGS OR SOME
(A/S/Q)?

You have 3 choices.

THEEDITOR 1i-13

THE EDITOR

A causes ALL occurrences of the string to be changed. After
pressing A, the program is displayed with the new string.

S lets you change SOME occurrences of the string. The program
will be displayed with the cursor positioned on the first
occurrence of the string you want to change. If you want that
string changed, press Y. If you do not want to change this
occurrence of the string, press N. The cursor advances the
next occurrence and you can repeat your choice. This
continues until no more instances of the string can be found.

Q lets you QUIT the Change String function and returns you to
the Special Commands menu where you can select another
function.

FIND STRING

This command lets you find a particular string in your program. It is like
the search and replace function, but it just locates the desired string
without changing it.

FINDING STRINGS

1. Press A. The screen will display: A:

2. Enter the string you want to find and press <ESC>
NOTE: Be sure to Press <ESC> and NOT <RETURN>.

3. You can now search forward or backwards through the file by
pressing either <CONTROL>-Z or <CONTROL>-W.

<CONTROL>-Z moves the cursor forward through the file to the
next occurrence of the string. Pressing the control sequence
continues the search until you reach the end of the program.

<CONTROL>-W moves the cursor backward through the file
until it finds the next occurrence of the string. Repeating the
process continues the search until you reach the beginning of the
program.

THE EDITOR Il - 14

THE EDITOR

Saving Files And Quitting

The Special Commands Menu gives you 3 ways to save your program
and leave the Editor mode. By making the appropriate selection, you
can

* save your program and exit the Editor mode
* save your program but return to it for more editing
* quit the Editor without saving the program

Whenever you save a program, it will be saved with the pathname
specified at the top of the Special Commands Menu.

Remember, when you are in the process of writing or editing a program
and you want to save it, press <ESC> to get the Special Commands
Menu.

If you have been editing an existing file and save it under its existing
pathname, the most recent version will overwrite the old version, and
the old file will be lost. If you want to save both versions of the program,
select the CHANGE PATHNAME function and change the pathname
of the latest version of the program before you save it.

Once you have set the pathname that will identify your program on the
disk, select one of the Save and Exit options.

SAVE AND EXIT Press X

This option saves your file under the pathname indicated at the top of
the menu and exits the editor. You are returned to the system prompt.

SAVE AND RESUME Press S

This option saves the file under the pathname indicated at the top of
the menu and returns you to the program.

NOTE: Use the SAVE AND RESUME selection often while you are

writing a program. This will insure that you always have a fairly recent

gpr:(ydog the program in case a problem develops with your computer or
isk drive.

THE EDITOR k- 15

THE EDITOR

DISCARD AND QUIT Press Q

This option exits the Editor without saving the program. When you
select this option, the following message appears:

THE CHANGES YOU HAVE MADE HAVE NOT BEEN SAVED.
ARE YOU SURE (Y/N) ?

NOTE: Press Y only if you are absolutely certain that you do not want
to save a copy of the current program. You will be returned to the
operating system and will see the system prompt.

Press N if you decide that you don't want to discard the file. You will be
returned to your file in the Editor.

CONCLUSION

You should now be fairly comfortable with the text editor and the cursor
control commands. You should also be able to use the Special
Commands Menu to rename, include, or save files that you write, as well
as locate lines and change strings.

HELP Screens

The Editor contains several HELP screens which can assist you if you
forget one of the commands. You can call a HELP screen by pressing
[OPEN-APPLE}-? on the Apple /e and //c or ? on the Apple // or //+.

Other Text Editors

The Kyan Text Editor is simply a word processing program that lets you
enter source code in a form that the Pascal compiler can understand
and translate into object code. You may already have a word

processing program which you are familiar with and prefer over the Kyan
Editor. If this is the case, feel free 10 use your own editor. The only
requirement is that your editor must generate a sequential
ASCII text file. Otherwise, the Kyan Pascal compiler will not be able
to read your Pascal source code file.

“HE EDITCR - 16

Il KYAN PASCAL

Kyan Pascal contains many features that are not part of standard Pascal.
These features make writing Pascal programs even easier, they also
make the programs more powerful.

This section explains how to

* Compile Source Code Programs

* Direct Input and Output

* Include Other Files in a Program

* Chain Files

* Declare and Manipulate Strings

* Use Graphics

* Create "Stand-Alone" Disks and "Auto-Run” Files
* Run a Program

If you are new to Pascal programming, read the section on compiling a
source code file. Then skip the rest of this section until you have
studied the Tutorial.

If you already know Pascal, read this section to become acquainted with
Kyan Pascal's special features.

ISO STANDARDS COMPATIBILITY

Kyan Pascal complies with the standards established by the
International Standards Organization (ISO) for professional Pascal
compilers. It has been fully validated for compliance to Level 0
standards using the Pascal Test Suite developed and distributed by
the 1SO.

Kyan Pascal contains only one significant deviation from the ISO
standard. Kyan Pascal does not support FUNCTION AND
PROCEDURE NAMES USED AS PARAMETERS IN FUNCTIONS AND
PROCEDURES. Kyan decided not to support this feature because it is

KYAN PROGRAMMING i - 1

KYAN PASCAL

not widely used by Pascal programmers and because the costs of
adding it to the compiler (in terms of lost compiler performance) are far in
excess of the benefit to be gained. Specifically, the addition of this
feature would have required a much larger compiler (in terms of code
size) which would have reduced the amount of space available for user
programs. Also, the compiler checking needed to support this feature
would have significantly reduced the compiler speed.

Kyan Pascal also contains extensions to the ISO standard. These are
the predefined functions POINTER AND ADDRESS and the ability to
“include" files and incorporate in-line assembly code into Pascal
programs. These extensions were added because they significantly
enhance the functionality of the Pascal implementation without
violating the 1SO standards.

THE PASCAL COMPILER

SECTION 1l explained how to use the Text Editor to write and save a
Pascal source code program. This program contains all the program
logic and Pascal syntax. The computer, however, can not understand
the program as it now exists. Your Source Code or Source Program
must be translated into statements that make sense to the computer
itself. Another program must translate the Source Code into Object
Code. This translator is called a Compiler.

The Pascal Compiler reads the filename of your program and then, after
locating the file, translates all the Pascal statements into what is known
as Assembly Code. A second software module, known as the
Assembler, then translates the Assembly Code into Object Code which
the computer can run.

When the Compiler creates an Object Code file from a Pascal source
code file, it identifies the new file by deleting the .P extension to the
name of the Source file. If you compile a program named MyFile.P,
the Object Code file will be named MyFile.

KYAN PROGRAMMING li -2

KYAN PASCAL

COMPILING A PROGRAM

To compile a program, first enter the Main Menu.

NOTE: If you are in the Editor, save your current program and exit the
Editor. When you see the system prompt (%), type MENU. If your are
in some other menu, follow the directions at the bottom of the screen
until you are back in the Main Menu. If you are using a single drive
system, you should make sure the Master Disk or the Tutorial Disk is in
the drive. If you are using multiple drives, remember to use full
pathnames to get back to the Main Menu.

When the Main Menu appears, it looks like:

Prefix: /KYAN.PASCAL/

KYAN PASCAL MAIN MENU

ED Editor

PC Pascal Compiler

FILER ProDOS Filer

KIX KIX Command Menu
INTRO Introduction to Kyan Pascal
QUIT Exit the KIX environment

Press [OPEN APPLE] - ? for HELP
Press <RETURN> to enter a command

Note the pathname prefix at the top of the menu. This is the default
pathname prefix if you booted the Kyan Pascal Disk.

KYAN PROGRAMMING il -3

KYAN PASCAL

To begin the process of compiling a program, press <RETURN> and
type PC. The Compiler Menu will appear on the screen. This menu
lists the options that are available with the Compile command.

AR AR AN AN AR AR AR AR AR R A A AR AN R R A AR AN AR RN R AN AR R A AR A AR R AR RN A SAN RN RS ARAS

Kyan Pascal Compiler
Copyright, 1986, Kyan Software Inc.

COMPILER OPTIONS
-O pathname Give the compiled file a new path

>n (pathname)

name. Default: The object file will be
assigned the source filename less the
".P" extension.

Direct compiler error listing to the device in
Slot "n" (n=1..7). Default: output to screen
only (Slot 0). Alternately, specify pathname
and save the error listing as a text file.

Generate an intermediate file of assembly
source code file named "P.OUT". Do not
assemble into object code. Default:
Generate object code file.

Emit line number and filename on
Runtime error. Default: Do not
generate runtime error message.

Show progress of compiler and assembler.

Enter Pathname and Options

PC:

WERRARNAR SRR AN AR ARAR AR AN RAAN AN AN R AR AR RAA KRR AR AR AR AR A AR AR AR R AN ORI A RO

<YAN PROGRAMMING il - 4

KYAN PASCAL

The Compiler Options

The compiler menu lets you select options that affect the output of the
compiled code.

-O pathname

Assigns a new pathname to the compiled file. Use it to redirect the
compiled file to another disk or rename the compiled program.

>n (or pathname)

Directs an error listing to the device in Slot n where n is any Apple slot
from 1to 7. Alternately, a pathname may be specified to save the error
listing as a file. Error listings identify Pascal syntax problems which the
Compiler encounters when it tries to translate source code into
Assembly code. If syntax errors are detected, you must re-edit and
recompile the source code. The default output device for error listings
is Slot 0 (the screen). If you want a printed listing of error messages,

" use this directive to specify the slot number for your printer.

-S

The compiler generates an Assembly code source file but does not
assemble the file (i.e., it does not generate an object code file). The
assembly language file will have the filename "P.Out". To save this file,
use the rename command and add a ".S" extension to the filename. \

/Uo -{)L:b-w.
-DM' ASSQJ/PV //’M- t\.q»é&»%?

This compiler option is useful for debugging Runtime errors in the
program. When this option is specified, Runtime errors will return the
filename and line number of the offending statement.

-P

This option lets you observe the progress of the compiler and
assembler. First, a file is opened which is the intermediate assembly
language file ("P.Out"); then, the Pascal source code is compiled (dots
are printed on the screen); then, P.Out is closed and assembly begins.
With this option you can observe the relative speed of ProDOS (in

KYAN PROGRAMMING il -5

KYAN PASCAL

opening and closing the files), the Pascal compiler, and the macro
assembler.

When you decide which options you want to use when compiling the
program, follow these instructions. (NOTE: The pathname, option
specifications, and output redirection can appear in any order).

1. Enter the pathname of the Pascal source code file.

2. To change the pathname, use the -O option.

3. Include a -S or a -D for the other options.

4. |f you want to redirect error listings, conclude the options
list with the >n directive (n=1..7).

Examples

Suppose you want to compile the file named MyProgram.P which is
stored on the disk /Volume1/. The following illustrates the use of
compiler option commands which could be entered after the PC
prompt.

1.

MyProgram.P
Compiles MyProgram.P with all the default options.
MyProgram.P -O /Volume2/MyProgram

Compiles MyProgram.P, but directs the object code to
another disk named Volume2.

MyProgram.P -S >1
Creates an Assembly language source code file named

P.Out and directs error messages to a printer in Slot 1.
No object code is created.

KYAN PROGRAMMING i - 6

KYAN PASCAL

ERROR MESSAGES

If the compiler discovers any syntax errors in the program it is trying to
translate, it does not produce Assembly code. Instead, it generates a
list of lines containing errors. Each line is identified by its position in the
program. (Note: Line numbers are not used in Pascal programs as they
are used in BASIC. The line numbers in error messages are only used
for identifying a line of source code where an error exists.)

After the line number, the line itself is displayed. A caret (*) indicates
where the error occured in the line, and an eror message describes the
type of error which the compiler identified.

For example, if you tried to compile a program containing the following
statement in the tenth line of code

WiriteIn('Error illustration’).
the compiler would return the following error message:

ERROR ON LINE 10 OF FILE "MyProgram.P"
Wiriteln('Error illustration’).
A

" OR "END" EXPECTED

The compiler error message indicates that the tenth line of code
contains an error. It then says that the line should end with a semicolon
or that there should be an END statement before the period.

As you gain experience compiling programs, you realize that a single
error often generates an entire series of syntactical errors. For
example, the compiler counts up the number of opening and closing
segment indicators to make certain that there is an equal number of
both-- BEGIN/END statements, are a prime example. If you omit any
part of a pair of such statements, every BEGIN/END pair and every
period may cause an error in the program.

Since the compiler checks only for syntactical errors, you may write a
program that produces an object code file, but then produces
unexpected results or even fails to run. The problems may be
threefold.

KYAN PROGRAMMING il -7

KYAN PASCAL

1. You may have written the formula for a circle as "r*r* instead of
*3.14*r*r" . This mistake will simply cause the program to
miscalculate results.

2. You may have introduced errors that cause the Assembler to crash.
These are called Assembler errors.

3. Or, finally, you may have introduced system errors that only
become apparent when the program runs. These are called
runtime errors.

NOTE: For a complete list of error messages and their
meanings, please refer to the Appendices in this manual.

OUTPUT CONTROL

Kyan Pascal has special features that allow you to control the format of
output, to list a source code file on the printer, and to redirect output
within a program to the printer.

Format Control

Kyan Pascal automatically directs output to the screen unless otherwise
specified. If output is redirected to a printer, the format of the output
(e.g., margins, line spacing) is preconfigured.

You can change the configuration of output, using commands in the
KIX system. For a full discussion of KIX, see Section VI. It explains in
detail how to reset the defauit values to your own specifications.

< &N PROGRAMMING i - 8

KYAN PASCAL

Printing Source Files

Often, you will want a hard copy of the program you are working on. It's
always easier to spot mistakes on paper than it is to see them on the
screen. Kyan Pascal offers you two options for printing a listing of your
programs. The first optionis to use the LPR command which is
described in the KIX section (Chapter V1) of this manual. The second
option is to use the PRINT program which is described below.

The PRINT program allows you o print a listing of any source program.
You can load and run this program whenever you see the system
prompt. If you are editing a program, press X to save the file and exit the
Editor. If you are in the Main Menu, type <RETURN> to get the %
prompt.

To print any text file enter
PRINT

at the % prompt. The computer will load the program and display the
prompt

Pathname:

Simply enter the full pathname of the program you want to print. Make
sure that the printer is turned on before you execute this command.

After you enter the pathname, the program will ask if you want program
line numbers printed. Itis usually best to select this option. When you
compile the program, the Compiler lists the line number and the line
containing the error. If you already have a copy of the program with the
lines numbered, it is easier to locate the lines with errors.

Redirecting Output Within a Program
Kyan Pascal includes a program called PR.1 that allows you to redirect
output from your program from the screen to the printer. You can

redirect the output back and forth as many times as you want.

Before you can redirect output within a program, however, the PR.I file
must be "included" in the program's declaration section (after the

KYAN PROGRAMMING it -9

KYAN PASCAL

Variables List and before the body of the program). For a complete
explanation of "include" files, see the discussion of INCLUDE in the
next section of this chapter.

To include the PR.1 program within your program, enter the following
statement in your program’s Declaration section:

#i PR.I
A semicolon s not used after the include statement
Once you have included the PR.! file in your program, redirect output
from your program to the printer with a PR(1) statement. Just use this
statement before you execute a Write or Writeln statement.

To redirect your program output back to the screen, use a PR(0)
statement. (The number zero, not the letter O.)

See the second lesson in the Tutorial for a sample program that
illustrates the redirection output to the printer.

INCLUDE

Kyan Pascal lets you "include” other procedures, functions, or text files
within a program. This include capability allows you to create a library of
frequently used functions and procedures.

The Include feature also allows you to incorporate routines found in

Kyan's MouseText, Advanced Graphics, System Utilities, and other
programming toolkits into your own Pascal programs.

Including Subroutines
To “include” a subroutine, put the INCLUDE statement in the
declaration of the program between the list of variables and the body of

the program that calls the included subroutine.

#i Pathname

XY AN PROGRAMMING 1ii - 10

KYAN PASCAL

The pound sign (#) and the letter i must appear in the first 2 columns. If
the program and the subroutine are both in the same working directory,
then only the filename is necessary. Otherwise, the full pathname for
the included file should be listed.

For example, assume the following procedure has been saved on a
disk named Routines.

ARAEAAARRARERARAARA A AR ARA AR AN AN A AR AN AR

PROCEDURE Hello;

BEGIN
Writeln('Hello, World.")
END;

ARANSAEAARAARR A RN N AR RARNRANRARAAN SRR RN AR

You can include the PROCEDURE Hello in the following program as
follows.

PROGRAM Main;
#i /Routines/Hello (*full pathname is specified*)
BEGIN

Hello
END.

When including files, you must obey the Pascal rules of syntax. The
included file(s) (like Functions and Procedures) must be located
between the variables list and the bady of the program. To help avoid
syntax errors, try to visualize the included lines of text inserted in the
main program in place of the include statement. If the resulting program
follows Pascal rules of syntax, then the block is properly included.

Once you know how to include other files, you can begin including the
special Kyan procedures and functions that are contained on the
Kyan.Pascal disk. This enables you to use special String and Graphics
features.

KYAN PROGRAMMING Iii - 11

KYAN PASCAL

STRINGS

String is not a predefined Pascal data type. But if you declare a String
as an array of characters, you may use the following string subroutines
which have been predefined in Kyan Pascal.

Length
Index
Substring
Concatenate

To use a string manipulation routine, declare a String, declare the
maximum size of the string as a Constant named Maxstring, and
include the string routines you will use.

The following example creates a String ten characters long and then
includes the Length routine which can be called from within the body of
the program.

PROGRAM SampleString;

CONST
Maxstring = 10;

TYPE
String = ARRAY[1..Maxstring] OF Char,

VAR
Line : String;

#i Length.l
BEGIN
END.

The value of Maxstring can be any size that meets the needs of the
program. It cannot, however, exceed the maximum integer size for
Kyan Pascal (MAXINT = 32767).

A¥YAN PROGRAMMING i - 12

KYAN PASCAL

The following paragraphs explain each of the string manipulation
routines which are predefined in Kyan Pascal.

Length

The Length routine returns the actual length of a string. This routine
assumes it has reached the end of the string when it encounters either
the first blank space or the last character of a full string.

Use the Length function to test strings or to eliminate trailing spaces
when you print the string. The following program illustrates both of
these applications and the use of the include file Length.l.

PROGRAM Demolength;

CONST
Maxstring = 10;

TYPE
String = ARRAY([1..Maxstring] OF Char;

VAR
s : String;

#iLength.l (* predefined Kyan routine *)

BEGIN
s="abcd
Wiriteln(s: Length(s));
ENWriteln('The string is ', Length(s), ' characters long’)
D.

The string in this program is defined as an array of 10 characters. The
actual string defined in the program, however, contains only four
characters. The Length function is used to eliminate the trailing 6
spaces when the string is printed on the screen. The function is also
used in the final Writeln statement.

KYAN PROGRAMMING il - 13

KYAN PASCAL

Index

Index returns the position of one string within another string. To use
the Index function in a program, the file Index.l must be included in
the program declaration.

The actual function used in the body of the program takes two
parameters, String1 and String2.

As an example, a program declares a string as 10 characters long. It
then declares S1 and S2 as string variables. If the program defines S2
as‘a ‘and S1 as'baby ‘', the statement

Index(S$1,52);
returns the value, 2.

Note that the letter "a" is the second character in the second string. If
S2 is not found in S1, the Index returns zero.

Substring

Substring extracts part of a string. The file Substring.l must be
included in the program declaration. The Substring statement takes
four parameters: the source string variable; the destination string
variable; the position in the string where the substring begins; and, the
length of the substring to be extracted. lts syntax is

Substring(String1,String2,Begin,Length);
If the length of the substring is less than Maxstring, trailing spaces are
added to the substring. For example, if Maxstring is defined as 10 and
the source String variable , S1, is defined as ‘abcdef °, the statement
Substring(51,52,2,2);
returns the substring ‘bc ",
The substring begins at the second character in the string and extracts

two characters. The length defined by Maxstring adds the trailing
spaces. You can use the Length function with the Substring function if

AYAN PROGRAMMING Ili - 14

KYAN PASCAL

you want to eliminate those spaces when writing the substring. For
example,

Writeln(Substring(S1,52,2,2): Length(Substring(S2)));

prints only the characters "bc".

Concat

Concat is an abbreviation for "Concatenate,” which means to join two
strings in a third string. To use this procedure, the file Concat.l must
be included in the program declaration.

The statement takes three parameters: the first string variable; the
second string variable; and, the result string. Its syntax is

Concat(String1,String2,String3);
If Maxstring equals 10, and S1 equals ‘Any °, and S2
equals ‘Body ', the statement
Concat(S1,52,S3);
produces a third string, S3, that equals ‘AnyBody ‘. Note again the

trailing spaces which may be eliminated by using the Length function in
conjunction with Concat.

GRAPHICS

Kyan Pascal supports high resolution graphics functions. They may be
used to draw lines between points and create figures in outline.

Before you can use the graphics functions, however, you must first
relocate your program in the computer's memory. A Pascal program
normally originates in memory location $800, but the graphics functions
need to use this area of memory. Consequently, when you use high

KYAN PROGRAMMING il - 15

KYAN PASCAL

resolution graphics, you must relocate your Pascal program in memory.
You can relocate your program (to origin $4000) by inserting a simple
assembly language routine before your program declaration.

Once your program is relocated in memory, you include the file
HIRES.I in the program declaration and begin using the high
resolution graphics commands.

The following example illustrates these points. it shows the Assembly
language routine used to reset the origin of the main program and the
include statement for the high resolution file.

#A

_UsesHires

#

PROGRAM SampleDraw;
HIRES.]

BEGIN

END.

For a complete discussion of Assembly language routines in a Pascal
program, see Section V. The important point in this example is that the
pound sign (#) must appear in column 1 and the letter A must be in
column 2. The routine relocates the program to position hex 4000.
Next the program is declared and the High Resolution file is included.

Using The Graphics Routines

Once you have relocated the program and included the HIRES. file,
you can use the four high resolution graphics commands: HGr, Plot,
Draw, and Tx.

KYAN PROGRAMMING il - 16

KYAN PASCAL

HGr;

HGr turns on the high resolution graphics screen. It must precede any
Draw statement.

Plot

The Plot procedure positions the cursor at a specified position and
plots a dot in that point with the color specified. The syntax of Plot is

Plot(X, Y, n)
X and Y are the coordinates of the point and n is the color..
Draw

The Draw procedure draws a line between any 2 points on the screen.
These points are indicated by their X and Y coordinate values. The
syntax of Draw is

Draw(X1, Y1, X2, Y2, n)

X1,Y1 indicates the starting point and X2,Y2 indicates the ending point.
N allows you to specify the color of the line.

TX;

Tx turns off the high resolution graphics screen. This command must
be called at the end of the graphics portion of the program. (Otherwise,
the computer will remain in the high-resolution graphics mode and it will
be necessary to reboot the system to clear it.)

The Monitor Screen

In high resolution mode, the Apple monitor is composed of a grid
measuring 280 pixels by 192 pixels. X values are located along the
horizontal axis from positions 0 to 279. Y values are located along the
vertical axis from positions 0 to 191. The origin of the two axes is the
upper left-hand corner.

KYAN PROGRAMMING Il - 17

KYAN PASCAL

The following screen map plots a few sample points.

0 100 200 279
0_| | | X
} .
| (50,25)
|
|
|
100' * -
| (100,100) (200,100)
} .
| (50,150)
|
191|
Y
Colors

The value of "n" indicates the color of the line. You can select from a
palette of 6 colors numbered from 0 to 5.

Black
Green
Purmple
Red
Blue
White

NEBWN=—=O

KYAN PROGRAMMING ill - 18

KYAN PASCAL

A Sample Draw Statement

The following procedure draws a red line across the middle of the
screen.

Draw(1, 96, 279, 96, 3);

(1, 96) are the coordinates of the starting point of the line. (279, 96) are
the coordinates of the ending point of the line. (3) specifies a line color
of red.

A FINAL NOTE ON GRAPHICS

After running a program using graphics, you may find your screen filled
with garbage, or you may have difficulty getting a Pascal programto run.
If this occurs, your computer is probably still operating in the high
resolution graphics mode (i.e., you forgot to include the closing Tx
command in your program). To get out of the high resolution mode,
you must reboot the system. Press <CONTROL> <RESET>.

CHAINING PROGRAMS

Kyan Pascal features a Chain statement that links compiled files. When
you chain files, the first file calls the object code file of the second
program. Under certain conditions, it can pass variables to the second
file. In essence, when two files are chained, the last command of the
first program tells the computer to RUN the object code of the second
program.

The syntax of the chain statement is
Chain(/Volume.Name/File.Called');

To use the Chain feature, put the Chain statement in the last line of the

Main program just before the END statement. (Since control is

immediately passed to the second program, more statements in the first
would be irrelevant unless the second program was being linked as part

KYAN PROGRAMMING i - 19

KYAN PASCAL

of a conditional sequence and the second program itself chained back
to the first.)

The first file can pass variables to the second file only if the variables in
the second file are declared in the same order and as the same data

types.
An Example Of Chaining

in the following sample programs, the first uses the Chain feature to run
the object code file of the second. The first program asks the user, a
salesperson, to enter the name and price of a product. When the
information is entered, the program chains to the second program. The
chained program then requests the cost of the item to the company.
Using this information and the price data that was passed to the
program, it calculates the profit and displays the information on the
screen.

The individual programs are very straight-forward. Note, however, that
the first part of the variable declarations in both programs are identical.
Only the last two variables in the second program’s list and the Chain
statement at the end of the first program are different.

First Program

PROGRAM Retail(Input,Output);

TYPE
String = ARRAY[1..64] OF Char;

VAR
ProductName : String;
Price :Real;

BEGIN
Wiriteln;
Writeln('What is the name of');
Writeln('the product? ');
Readin(ProductName);
Wiriteln;
Wiriteln('And what is the price in dollars *);
Wirite('and cents? $');

XY AN PROGRAMMING Il - 20

KYAN PASCAL

Readin(Price);
CHAIN('Profit’)
END.

Second Program

PROGRAM FindProfit(Input,Output);

TYPE
String : ARRAY]1..64] OF Char,

VAR
ProductName : String;
Price, Cost, Profit : Real;

BEGIN
Writeln;
Wiriteln(' > You have chained to program #2 <);
Writeln('What was our cost of the *, ProductName);
Write('that you sold?);
ReadIn(Cost);
Wiriteln;
Wiriteln('Okay, you sold a *, ProductName);
Wiriteln('for $', Price:4:2);
WiriteIn('lt cost us §', Cost:4:2);
Profit := Price - Cost;
Wiriteln('We made a profit of S', Profit:4:2);
END.

Comments

1.

Compare the declaration sections of both programs. They are
identical until the second program adds two more variables. Note
that these new variables, Cost and Profit, are declared after the
variables which were passed.

The first program chains to the second by the pathname 'Profit’. It
directs the computer find a file named Profit which was compiled

KYAN PROGRAMMING il -21

KYAN PASCAL

previously. This file may be stored in: /RAM/BIN (i.e., in the
RAMdisk); the directory from which it was invoked (i.e., in the
directory on a data disk which contains the main program); or, in
/Kyan.Pascal/BIN (i.e., on your backup copy of Kyan Pascal). The
Kyan Pascal compiler will automatically search all of these locations
for the file to be chained.

The syntax of the Chain statement must be followed exactly. This
includes the parentheses and single quotes which surround the
pathname.

A String Variable may be used as the pathname for a Chained
program.

The second program receives the variables and string information
from the first. It then requests new information and, using both the
new and the passed data, calculates the value of Profit.

Important Points About Chaining

When Chaining

1.

The pathname to the second program must specify an object code
file, not a text file.

No statements in the first program will be executed after the Chain
statement is called. The only exception to this rule is if the Chain
statement is part of a conditional test and if the chained program
itself is chained back to the calling program.

When Passing Parameters

1.

The variables must be declared in the same order in both programs.
Note, however, that the second program can add additional
variables after it duplicates the passed variables of the first program.

The data types of the variables must be identical.

AXYAN PROGRAMMING 1li - 22

KYAN PASCAL

How Kyan Pascal Stores Passed Parameters

1. Variables are stored in the variable stack. When parameters are
passed from program 1 to chained program 2, they remain in the
same stack location (i.e., variables stored in locations A, B and C in
program 1 stay in those locations when passed to program 2). |f
new variables are declared in program 2, they will be stored in
subsequent locations (e.g., locations, D, E, F).

2. The Stack begins in high memory and grows downward.

Chaining System Files on Standalone Disks

The chaining process described to this point assumes that you are
chaining files in Kyan's KIX operating environment. If you create a
standalone disk (described in the next section), the KIX environment is
no longer present, and so the standard CHAIN procedure will not work.
In this case a special Include file must be used for chaining. This file is
found on the second side of the Kyan Pascal System Disk.

This new chain procedure is called CHAINPROGRAM and has the
following syntax:

Procedure CHAINPROGRAM (VAR PROGRAMNAME: PATHSTRING);

To use this procedure you must first insert a type declaration for
PATHSTRING. This declaration is:

TYPE
PATHSTRING = ARRAY[1..65] OF CHAR,;

Then Include the procedure CHAINPROGRAM.I in your program.
When you want to chain a system file, simply call the CHAINPROGRAM
procedure with the pathname of the system file to be chained.

KYAN PROGRAMMING 1il-23

KYAN PASCAL

CREATING SPECIAL DISKS
AND FILES

Kyan Pascal allows you to create a "Stand-Alone” disk that will allow
programs to run independently of the Kyan Pascal Disk. To do this, you
must create an "Auto-Run” file for that disk. This file will run
automatically when you boot the "Stand-Alone" disk.

Auto-Run Files

To create a file that will run automatically, you must first convert your
program into a System file. To make a system file, include the following
assembly language instructions before the first line of the Pascal
program.

#a (* locate # symbol in column 1 *)
_SystemFile
#

Then, recompile your program. Finally, using the Rename command in
the ProDOS Filer, append the characters ".SYSTEM" to the filename
(e.g., change Filename to Filename.System). This file will now
automatically load and run when the disk is booted.

NOTE: ProDOS automatically loads and runs the first SYSTEM file it
finds in the disk directory. So, if you want this file to load and run on
boot, make sure it is listed first in the disk directory.

Creating A Stand-Alone Disk

The Auto-Run file is the first element of a Stand-Alone disk. The other
elements are the ProDOS operating system file, the Pascal Runtime
Library file (LIB), and copies of any included or chained files you have
referenced in your program. With copies of all these files on the disk,
you can load and run your programs independently of the Kyan Pascal
disk.

KYAN PROGRAMMING i - 24

KYAN PASCAL

CAUTION: ProDOS, the Kyan Pascal Runtime Library (LIB), and certain
other software files are copyrighted products of Kyan Software and
Apple Computer. Use of these files in stand-alone disks is subject to
restrictions outlined in the Software License Agreement found in the
Preface to this manual. Please be sure to carefully read the Software
License Agreement and understand the restrictions noted. Failure to
comply with these restrictions may result in a felony violation of Federal
Copyright Laws.

RUNNING A COMPILED
PROGRAM

A compiled program can be loaded and run whenever you see the
system prompt (%).

1. Make sure that a copy of the Pascal Runtime Library (LIB) and
copies of any included or chained files (e.g., PR.)) are located
in the same directory as the program to be run or a pathname is
specified for these files.

2. Enter the full pathname of the program and press <Return>.
When you run the program, be sure that you specify the object
code version of the file. The program will load and run. When
finished, the system will return you to the prompt (%).

RANDOM NUMBERS

The Kyan Pascal diskettes contain a special program which is used to
generate random numbers. The file RANDOM.I must be included in the
declarations portion of your program. Then, calling the function
Random in the body of the program will return a random number
between 0 and 1.

This program is written in assembly language. To see a listing of it, use
the Kyan text editor and, when prompted, enter the pathname for the
file (e.g., /volume.name/Random.l).

KYAN PROGRAMMING 1l - 25

KYAN PASCAL

If you need a more powerful random number generator with a Seeding
capability, you may want to consider using Kyan's System Utilities
Toolkit. Please call Kyan Software for more information about these
and other programming toolkits.

CONCLUSION

This section has introduced you to the unique aspects of Kyan's
implementation of Pascal that make it efficient and powerful. it has
explained how to:

* Compile Programs

* Control Output

* Include Files

* Manipulate Strings

* Create Graphics

* Chain Programs

* Create Auto-RunFiles on Stand-Alone Disks
* Run a Compiled Program

* Use the Address function

*Generate Random Numbers

The only feature of Kyan Pascal not covered in this section is its use of
memory. Since this information is required only by advanced
programmers, it is included in Appendix B.

KYAN PROGRAMMING li - 26

IV TUTORIAL: PART |

This section contains 15 lessons that introduce you to the Pascal
programming language. The lessons are divided into 2 parts. Part 1
covers the elements of a Pascal program and introduces the most
important commands. Part 2 explains more advanced techniques used
in writing Procedures, Functions, Records, and Files.

If you are unfamiliar with Pascal, read this section carefully. When you
enter the sample programs, make certain that you enter them exactly as
they appear in the text. A misplaced colon, semicolon, or period will
prevent your program from compiling.

Before attempting to enter and run the programs in the Tutorial, you
should read Sections I, II, and 1il which explain how to format a disk, use
the text editor, and how to compile and run a Pascal program.

NOTE: FOR USERS WITH SINGLE DISK SYSTEMS

The Tutorial assumes that you are writing and saving your programs on
the disk that you made in Section I. If you have not done so, read
“Getting Started” and configure a disk for use with your system.

The disk created in Chapter 1 contains a limited amount of space
because it also contains the Kyan Pascal system files. You may find that
the disk becomes full as you work through the Tutorial. To avoid this
problem, you should make several copies of the disk. Also, to avoid
potential problems with pathnames, you should change the volume
name of these copies from /Kyan.Pascal to /Tutorial. The
examples in the following sections assume that the volume name of
your disk is /Tutorial. Use the ProDOS Filer to make your copies and
to change the volume names. If you aren't sure how to do this, please
reread Chapter 1.

NOTE: FOR USERS WITH MULTIPLE DISK DRIVES
If you have two disk drives, boot your copy of the Kyan Pascal disk in

drive #1. Load your User disk, created in Chapter 1, in drive #2. To
avoid potential problems with pathnames as you proceed through the

TUTORIAL IV -1

tutorial, we recommend that you use the ProDOS Filer to change the
name of your User disk from /User to /Tutorial. The examples in the
following sections assume that the volume name of your disk is
Mutorial. If you aren't sure how to do this, please reread Chapter 1.

Remember, after you boot your Kyan Pascal disk, you
must use the CD command to change the name of the
default working directory from /Kyan.Pascal to /Tutorial.

NOTE: SOURCE CODE VERSUS OBJECT CODE FILES

When you write a Pascal program, you create a text file which is known
as source code. When you create a source code file, you should
append a ".P" to the filename to indicate that it is a Pascal source code
file. When you compile this file with the Pascal compiler, you create a
machine code file which is known as object code. The object code file
is saved on the disk along with your source code. The object code file
has the same filename but without a *.P". If you look at a disk directory,
you will see both the source code file (YourProgram.P") and the object
code file ("YourProgram"). When you run the program, be sure to
specify the object code and not the source code file.

The Tutorial covers the following topics:

Part| art Il
1. The Pascal Program 8. Procedures
2. Using Formulas 9. Functions
3. Decision Making 10. Scope and Nests
4. FOR Loops 11. Armrays
5. Strings and Arrays 12. Records
6. Boolean Variables 13. Sets
7. Scalar Data Types 14. Files

15. Pointers

While using the tutorial, look in the Reference Section for a further
discussion of any topic that seems confusing.

TUTORIALIV-2

1. PASCAL PROGRAMS

If this is your first time writing a program in Pascal, you should pay
special attention to this lesson. It explains:

* the basic format of every Pascal program
* the use of Reserved and Predefined words
* the procedure for compiling and running a Pascal

program

OVERVIEW

The sample program shows how to print a message on the screen.
Although this may not seem like much of an accomplishment, be
patient. The program illustrates some very important points about the
Pascal language.

Notice that the program is identified by the word PROGRAM, that it is
given a name, Ego, and that the main part of the program is marked by
the words BEGIN and END. When you enter the program, make
certain that you copy it exactly as you see it. Like any computer
language, Pascal is very precise and requires that you adhere to its
rules exactly.

THE SAMPLE PROGRAM

The program in this lesson will simply print the message, "My name is
YourName," on the screen. [Note: When you see text printed in ltalics,
it means this is information which you should enter.}

If you are using a single disk drive configuration, make certain that the
disk Tutorial is in your drive.

If you are using a multiple drive configuration, make certain that the
Kyan Pascal disk is in drive #1 and the Tutorial disk is in drive #2.

TUTORIAL V-3

PASCAL PROGRAMS

1. First boot the correct disk and select the Text Editor
from the Main Menu. (Type "ED" after the prompt).

NOTE: If you have two disk drives, you can boot the

Kyan Pascal Disk in drive #1, and
the Tutorial Disk in drive #2.

* When prompted for a pathname, type
[Tutorial/lEgo.P The screen will display the
message

ED: FILE NOT FOUND.

A NEW FILE WILL BE CREATED WHEN SAVED.

PRESS SPACE BAR TO CONTINUE.

Press any key, the screen will clear, and the blinking
cursor will appear in the upper left-hand cormer. You
can now enter the program which will be called Ego.
To make sure that this is the case, press <ESC>.
Note: the pathname at the top of the menu is

{Tutorial/lEgo.P. Press <ESC> again to get back to

the editor.

2. Enter the program listed below, paying special attention

to the punctuation.

PROGRAM Ego(input,Output);

BEGIN
Wiriteln;
Wiriteln;
Wiriteln('My Name is your name')

END.

3. Press <ESC> to get the Text Editor Menu.

4, Press X to save the program and exit the Text Editor.

TUTORIAL IV- 4

PASCAL PROGRAMS

. When the % prompt appears, type PC and press RETURN.

. When the prompt "pc:" appears, enter /Tutorial/Ego.P followed

by a hyphen P (-P). The compiler will translate your source code, i.e.
the program, into code that the computer uses to run. The compiler
saves the object code under the pathname you have indicated, but
it deletes the .P extension to the filename.

7. The assembly listing will scroll up on your screen. If no errors

are reported, the prompt will reappear.

* If there were error messages, note them, and retumn to the editor
(you can return to the editor by typing ED when you see the prompt
%). Enter the pathname, /Tutorial/Ego.P to call up your file.
Make the corrections, save, and recompile your program, i.e., repeat
steps 3 through 6.

. To run the program, enter the pathname /Tutorial/lEgo when the

% prompt appears. Remember to delete the .P extension.

One final comment on the Tutorial Disk: when you become comfortable
with the language, you can begin using pathnames to save files on
different disks. This will enable you to use the full capabilities of the
Kyan Pascal language while you create separate program disks. Unless
you have multiple drives, however, this will require swapping disks.

THE LOGIC OF THE PROGRAM

1.

The first statement declares the name of the program,
Ego, and tells the computer to expect input from the
keyboard and to produce output onthe screen.

*In this program there isn't any input, but you don't have

to be totally honest with the computer. Good programming,
however, always includes the Input-Output declarations

in the name of the program.

. The next line, BEGIN, tells the computer that any

following statements are part of the body of the
program.

TUTORIAL V-5

PASCAL PROGRAMS

3. The two Writeln statements are PASCAL words for "write
this line exactly as indicated.” These two statements
produce two blank lines on the screen.

4. The third Writeln statement is followed by a
parenthesis, a single quote, and the message to be
printed, which is followed by another single quote and a
closing parenthesis. This statement prints the line on
the screen.

5. The END statement, followed by a period, tells the
computer that the program is completed.

TOPICS FOR PROGRAMMERS

Program Format

Every Pascal program begins by declaring the name of the program and
by indicating, inside parentheses, that there will be input and output.
This declaration is ended with a semicolon (;). Any Pascal program
assumes that input will come from the keyboard and that output will go
to the screen. Even though this program does not get any input from
the keyboard, you should form the habit of telling the computer to
expect input and to produce output.

The BEGIN and END statements open and close the body of the
program. This part of the program tells the computer what it should do
with all the information that it is processing. Put a period after the END
statement to indicate that the program is finished.

Within the body of the program, use semicolons to indicate the end of
separate commands. The line preceding an END statement, however,
requires no punctuation.

Think of the body of the program as a single, very general statement: it
BEGINs and, after executing a series of commands, ENDs with a
period. !Individual commands within the general statement are
separated by semicolons.

TUTORIAL V-6

PASCAL PROGRAMS

Iindentations show the different parts of the program. The PASCAL
compiler (which translates the program into data that the computer
understands) does not even read blank spaces. The spaces,
however, help you and anyone using your program to see the structure
of the program. Indenting the lines between the BEGIN and END
statements clearly shows that these commands are part of the body of
the program.

If your are going to be a serious programmer, it is very important to write
neatly formatted programs which clearly show the logic of your program.

Reserved and Predefined Words

The Pascal compiler, which translates your Pascal program into data that
the computer understands, immediately recognizes a small list of
words. These are called Reserved words. You can use these words
only in situations that make sense to the compiler. PROGRAM,
BEGIN, and END are examples of "Reserved" words. In general,
Reserved words indicate commands.

PROGRAM tells the compiler that what follows is an entire
program, and not a Procedure or a Function. [We'll discuss
these later.]

BEGIN and END tell the compiler that the main body
of the program begins and ends at these points.

In addition to Reserved Words, Pascal uses Predefined Words.
Predefined words indicate different types of data or identify functions
that have already been defined by the program.

Other predefined words tell the compiler to expect whole numbers,
characters, or operations that it should perform.

NOTE: Do not use any of Pascal's reserved words for the
name of anything within the program. The Reference Section
(Chapter VlI) includes all of the PASCAL reserved words.

In the manual, RESERVED words are printed in CAPITAL letters; all
Predefined words are printed with only an initial Capital letter.

TUTORIALIV-7

PASCAL PROGRAMS

Declaring a Program

Every Pascal program has two parts: the declaration and the
program body.

The first line of a program tells the compiler that what follows is a
program. This line is the Program Declaration. Indicate that this is a
program by writing the RESERVED word PROGRAM and the name of
the program. Then, inside parentheses, write the words
Input,Output. This tells the compiler to expect input from the
keyboard and to direct output to the screen. (Later, you will learn how
to include filenames and other important information in the Program
Declaration.)

The rest of this program consists of the body, which is a list of
commands for the program to execute.

BEGIN tells the compiler that any following statements should
be executed.

END tells the computer that the program is over. When it
marks the end of the program, it is followed by a period. If the
END statement indicates the conclusion of a block within the
program, i.e. a Procedure, a Function, or a separate block of
commands, it is followed by a semicolon.

ADVANCED TOPICS

Literals

A Literal is any printed character or characters which appears between
single quotes. A series of characters contained within single quotes is
called a String.

In the sample program, the Literal, "My name is YourName®, is printed
on the screen exactly as it appears within the single quotes. Such
Literals always follow a Writeln statement.

TUTORIAL V-8

PASCAL PROGRAMS

Comments

Comments may be placed anywhere in a program; and, the more
comments there are, the easier the programis to read. Indicate the
beginning of any comment with a parenthesis and an asterisk or a brace
"{". Indicate the closing of any comment with an asterisk and a
parenthesis or a brace "}". The following is a sample comment

(* This is a comment *) and { This is a comment }

CONCLUSION

This sample lesson taught you how to:

* enter and organize a Pascal program

* use RESERVED and Predefined words
* get input and direct output

* compile and run a Pascal program

The next chapter introduces different types of data and demonstrates
how to write a program that uses a formula.

TUTORIALIV-9

PASCAL PROGRAMS

(This page left blank for your notes.)

TUTORIAL IV-10

2. ENTERING FORMULAS

This program demonstrates how to write and enter formulas. It explains:
* Identifiers: CONSTants and VARiables

* Read and Write Commands: Read, Write, Readin,
Wiritein

* OQutput to the printer: #i PR.l, PR(1), and PR(O)

OVERVIEW

This sample program calculates the cost of constructing a building
based upon the cost of the materials, which is fixed, and the cost of the
labor, which depends upon the number of man-hours worked and the
rate of pay.

Since the total cost depends upon a number of factors, you will enter a
formula that computes the answer for different values. The formula
consists of a fixed value or constant, the cost of materials, and two
variables, the hours worked and the rate of pay.

Notice that in addition to the Program Declaration and the Program
Body discussed in the first sample lesson, this second lesson uses two
new terms: CONST and VAR. Also notice that you are not just
printing information to the screen; you are going to ask the user of your
program to enter information at the keyboard.

THE PROGRAM

After you have entered the Kyan Pascal Editor, enter
[Tutorial/Construction.P press any key at the File Not Found
message, and type in the following program. Remember that the
indentations are useful to you, the programmer, not the Pascal

TUTORIAL IV -11

ENTERING FORMULAS

Compiler. The indentations highlight the separate parts of your
program and show the logic of relationships. As in the first lesson,
make certain that you follow the punctuation exactly.

If you have any question about which disk to use when you have a
single or a double disk drive, or if you are not certain how to enter, save,
compile, and run the program, refer back to lesson 1.

PROGRAM Construction(input,Output);
(*Dollar units are thousands®)

CONST
Material = 325.0;

VAR
Hours, Rate, Labor, Total : Real,

BEGIN

Wiriteln ('Enter hours worked, and press RETURN.");
Writeln (Then enter rate of pay and press RETURN.');
Readin{Hours);

Readin(Rate);

Labor := Hours * Rate;

Total := Labor + Matenal;

Writeln (‘Labor = $', Labor: 8:2, ' Total = §', Total :8:2)
END.

Once you have entered the program, press <ESC> to get the Special
Commands Menu. Check the pathname to make sure that it is named
[Tutorial/Construction.P. If the pathname is-different, use the P
command and rename the file. Then press X to save it to disk. When
you see the prompt "%", type Menu and <Return>. Select the compiler
option "PC" and compile the program.

If the compiler detects any errors, it will print a listing on the screen.
Return to the editor; correct the errors; and recompile the program.

TUTORIAL IV - 12

ENTERING FORMULAS

If the compiler does not detect errors, the compiled program will be
saved to the disk and the prompt will reappear. Your program is now
ready to be run. Remember that the compiled version of your program
does not have the ".P" appended to the filename.

THE LOGIC OF THE PROGRAM

1. Request the number of hours worked and the rate of pay; then read
the user's input.

2. Multiply the Hours times the Rate to calculate the cost of the Labor.

3. Add the cost of the Material to the cost of Labor to determine the
Total cost.

4. Print the Labor and Total cost on the screen in a readable format.

GENERAL COMMENTS

When you program in Pascal, the first line identifies the name of the
program and tells, in parentheses, if there will be input and/or output.
The user provides the input from the keyboard. The computer directs
output to the screen.

If the computer requires values that are fixed, these values must be
identified before the main body of the program begins to execute. You
can't ask the computer to do something with a value it doesn't know.
Similarly, if you are going to have the user enter values on the keyboard
while the program is running, you must tell the computer at least the
names of those values and the type or types of numbers they will be.
With this information, the program knows that it should save some
space in memory for these user-entered values. Only then will the main
program be ready to deal with the numbers it receives.

In Pascal, all of these types of information are labeled by Identifiers.

This lesson introduces two. new types of Identifiers: CONST and
VAR.

TUTORIAL IV -13

ENTERING FORMULAS

CONST tells the computer that whenever the identifier
Material appears in the program, the value
declared under the heading CONST will be
used. Inthe sample program, the value 325.0
is the constant value assigned to Material.

VAR tells the computer that the identifiers listed
under this heading will be assigned values at
some other time during the execution of the
program. At this point, the computer doesn't
care what those values will be. It just needs to
know the type of value. [You'll learn more
about DATA TYPES later.] In this case, they
are what Pascal calls REAL. This means that
they have a decimal point in them.

The BODY of the program starts with the BEGIN statement. The next
two lines print messages on the screen which tell the user how to enter
the necessary information. The next line reads the values entered on
the keyboard. Once the program knows these values, it calculates the
Labor and Total costs of the project. The final line prints the resuits on
the screen in a readable format.

TOPICS FOR PROGRAMMERS

Identifiers

In a Pascal program, an IDENTIFIER is a name. It may be the name of
a program, of part of a program, or of a value, which can be constant or
variable. Pascal requires only that you tell it the names of the identifiers
and the types of data they will represent before you try to use themin a
program. When you name an identifier, you tell the computer to
reserve space in its memory to store a value. If you don'tinclude the
identifier and the computer encounters an unknown value, it doesn't
know what that value is supposed to represent or where o store it.
Pascal uses several different types of identifiers. At this point, we are
concerned with only two of them: constants and variables.

TUTORIALIV - 14

ENTERING FORMULAS

Naming Identifiers

An IDENTIFIER can have almost any name you want to give it. Only 2
rules govern your choice:

* The name must start with a letter.

* Any combination of letters or numbers may
follow. (WARNING: The compiler sees no
difference between upper and lower case
characters.)

To make a name unique, make sure that the identifiers within the same
program are different. Your programs will be easier to read and rewrite if
the identifiers clearly indicate what they stand for. For instance, "cost"
is a better identifier than "C" even though both are equally acceptable
to the computer.

Constants

Use constants to identify values that you will use frequently in your
program. This practice makes your program easier to understand. If
you come back to it in a few months, chances are that you may not
remember what the number 325.0 stood for. But if the value is
identified as "Material,” you won't have to puzzle over it. Also, if the
cost of material changes, you have to make only one change in the
program. In a long program that uses a constant frequently, you would
have to make many changes to update the one alteration in the
program,

Once you declare a CONST, you can use its identifier in any formula.
You can not, however, try to change its value. Consequently, the
identifier of a constant can only appear on the right side of an
assignment statement. For example, you could use the constant
Material in the following statement:

Total := Material + Labor;

You could not use the constant Material to store a calculated value as
in the following statement:

TUTORIALIV-15

ENTERING FORMULAS

Material := Parts + Repairs

Since Material is defined as a constant, it must remain the same
throughout the program. The previous example tries to reassign a new
value to Material and is therefore illegal.

Note: A constant is first identified by the word CONST.
A semicolon (;) ends the declaration of the constant's value.
Variables

Variables will be discussed throughout this manual. For now, itis
important to know that they represent values that will be passed to the
main body of the program at a later point. In this sense, they are the
opposite of Constants which always remain the same. This value might
be entered by the user while the program is running, or it may be a
value that another part of the program will calculate before passing it to
the main program.

When the compiler prepares the program for execution, it must expect
and reserve memory space for these, as yet, unspecified values. The
label VAR tells the program that what follows is a list of the identifiers, or
names, of the variables. All you have to do is indicate that you are lsling
the variables: Tell the computer the names to expect, and define the
type of data that each variable represents. In this example, we are
concemed with Real numbers, i.e. numbers with a decimal point. Other
types of data will be discussed in later examples.

NOTE: A semicolon (;) indicates the end of the variable list.
Input and Output

The Pascal program uses four commands to get information from the
keyboard and output it to the screen.

* Read
* Readin
* Write
* Writeln

TTCRIALIV-16

O
P

ENTERING FORMULAS

The two read commands ("Read" and "Readin”) tell the computer to
accept information from the keyboard. The two write commands
("Write" and "Writeln") print information to another device.

Read gets one element of data which has been labelled by
an identifier.

Readin reads an entire line of input (e.g. the computer gets
data until it senses that the <RETURN> key has been
pressed).

Note: When a Readln statement is given in the program, more than
one variable may be input. Simply separate the items by a space. Inthe
sample program, the user enters one value, presses <RETURN>, and
then enters the next value. It is also possible, because the program is
executing a Readin statement, to enter both values, separated by a
space, before pressing the <RETURN> key.

Write prints the quoted line, or a value represented by an
identifier, on the screen. It does not, however,
advance the cursor 1o the next line, but waits at the end
of the printed line for the next read or write statement.

Writeln prints the quoted line, or a value represented by an
identifier, on the screen. Unlike the Write command,
the Writeln command advances the cursor to the next
line on the screen.

Output to the Printer

After you name--or declare--a Pascal program, you must also tell the
computer to accept input or print output. You do this by telling the
program to acccept input and output files. This use of the term "file”
may seem strange if you are new to the Pascal lanaguage. Afile,in
Pascal, indicates a device. The default device for input is the keyboard;
for output, it is the monitor screen.

When the computer reads a statement like

PROGRAM Construction(input,Output);

TUTORIAL IV - 17

. ENTERING FORMULAS

it assumes that information entered at the keyboard goes to an input file
and that information to be output is directed to the screen.

Often, however you may want to direct output to another device, either
to a printer or to a disk drive.

Kyan Pascal allows you to redirect output to the printer by telling the
computer to "include” the procedures which control the direction of the
output. You do this by typing

#i /SourceVolumeName/PR.1

after the declaration of the variables. This is an "include” statement and
specifies the disk, or volume, which contains the printer output file. If
you are using a two disk drive system, that pathname is
/Kyan.Pascal/PR.l. If you are using the single Tutorial disk, the
pathname is /Tutorial/PR.l. Then, in the body of the program, you
call procedures which are contained in the "included file to redirect
output to the printing device. The following program is the same as the
sample program except that it directs the output to the printer instead of
to the monitor.

PROGRAM Construction(input, Output);

CONST
Material = 325.0;

VAR
Hours, Rate, Labor, Total : Real;

#i /Mutoral/PR.1 (*the include file which contains
procedures to redirect output®)

TUTORIALIV-18

ENTERING FORMULAS

BEGIN
Wiriteln (‘Enter hours worked and press RETURN');
Wiiteln ('Then enter rate of pay and press RETURN');
Readin (Hours);
Readin (Rate);
Labor := Hours * Rate;
Total ;= Labor + Maternal,
PR(1); (* procedure which directs Output to printer in slot #1 *)
Writeln(Labor =$', Labor 8:2, ' Total = $, Total 8:2);
PR(O) (* procedure which directs Output back to the screen *)
END.

ADVANCED TOPICS

Formating Topics

When you want to control where the output is printed--either to the
screen or the printer--you must tell the computer how to printit. In the
original sample program, notice line 5. It tells the program to print
'Labor = $§' and is then followed by Labor : 8:2. The first
statement prints text on the screen. The second statement tells the
computer how to format the printed output of the value Labor. It
indicates that whatever value Labor currently has should be allowed 8
decimal positions (including the decimal point) and 2 positions for the
following decimal value.

CONCLUSION

In this lesson, you have learned how to:
* Construct a formula
* Declare constants and variables
* Get input and write output
* Format data on the screen.

In the next lesson, you will leam how to manage and manipulate
different types of data.

TUTORIAL IV-19

ENTERING FORMULAS

(This page left blank for your notes.)

TUTORIAL IV - 20

3. DECISION MAKING

In this lesson, your will learn how to:

*Assign values to variables
*Use the IF-THEN-ELSE statement
to make decisions

OVERVIEW

In the previous lesson, you learned how to construct a formula that
calculates a value and then how to print that value to the screen. This
lesson also gets information from the user and prints output to the
screen. In addition, however, it makes a decision based upon the
information supplied. This involves using an IF-THEN-ELSE
statement.

This sample program calculates the amount of social security tax
deducted from a paycheck. It first asks the user to enter three values:
the hours worked, the rate of pay, and the amount of tax already paid.
IF the tax on this payment plus the tax already paid is greater than the
maximum tax which can be collected, the program calculates how much
must be paid to reach the maximum tax. Otherwise (ELSE), the tax is
computed and added to the amount of tax to date. Finally the results
are printed on the screen.

Note: The IF statement tests for the existence of a certain condition.
When that condition is true, it performs one group of actions which are
listed under the THEN statement. When the condition is not true, it

performs the sequence of actions which follow the ELSE statement.

TUTORIAL IV - 21

DECISION MAKING

THE PROGRAM

Beginning with this lesson, we asume that you know how to enter the
Text Editor and how to write, compile, and run the program.

Remember that every program must be declared, that you must define
the variables, and that the BODY of the program is enclosed between
BEGIN and END statements. Also remember that punctuation must
be followed exactly and that indentation allows you to indicate the
logical parts of the program.

PROGRAM SocialSecurity(Input,Qutput);

CONST
TaxRate = 0.075;
TaxMaximum = 4275.0;

VAR (* These values will be entered by the user *)
Hours, Rate, TaxNow, TaxToDate : Real,

BEGIN (* The BODY of the program*)

(* Get hours, rate, and tax to date values®)
Wiriteln;

Wiiteln;

Write('Hours worked = %);

Readin(Hours);

Write(Hourly rate = $9;

Readin(Rate);

Wirite('Soc Sec Tax paid to date = $;
Readin(TaxToDate);

(* Compute Soc Sec Tax for this pay period *)
TaxNow := Hours * Rate * TaxRate;

(* Determine if Tax paid to date + tax for this pay
period is greater than the maximum tax allowable *)

TUTORIALIV - 22

DECISION MAKING

IF TaxToDate + TaxNow > TaxMaximum THEN
BEGIN
TaxNow = TaxMaximum - TaxToDate;
TaxToDate = TaxMaximum
END (* of the IF-TRUE statement *)

ELSE (* if the IF statement is false *)
TaxToDate = TaxNow + TaxToDate;

(* Write Results *)

Wiriteln('Soc Sec Tax This Pay Period = §', TaxNow
8:2);

Writeln('Soc Sec Tax To Date = §', TaxToDate :8:2)
END.

Remember to save and compile the program. Also remember to delete
the .P extention from the filename when you want to run the program.
If you need to re-edit the program, enter the Editor and use the
filename.P to access the source code file.

THE LOGIC OF THE PROGRAM

1. Declare the program’s name and that there will be input and output.
Define constants using the "=" sign.

Declare variables and specify their data type.

Write requests for information to the screen.

Read input from the keyboard.

> o » w N

Compute the tax due on the current paycheck.

7. | the tax for this period would make the total tax withheld greater
than the maximum, subtract the tax to date from the maximum. This
returns the amount of tax still due. This is the real amount 1o be
deducted from this paycheck.

TUTORIALIV-23

DECISION MAKING

8. If the tax from this period would not make the total tax paid exceed
the maximum, simply add the amount to the tax paid to date.

9. Write the results to the screen.

GENERAL COMMENTS

A few reminders from the previous lessons should help make this
program easy to understand.

CONSTANTS must be declared, using an equal "=" sign, immediately
before the VARiables.

VARIABLES tell the computer to expect values that will be entered
while the program is running. These variables may be input by the user;
they may be read into the program from another file; or they may be
temporary storage places where the program stores intermediate
calculations. In any case, the computer will associate the value with the
name you have defined. The Data Type of the variable must be
indicated at the end of the variable list--in this case, they are all real
numbers, i.e. numbers that may contain decimal points.

The IF-THEN-ELSE Statement examines the current status of the
program and performs one action if that condition is true, another if it is
not true, i.e. if 2 numbers are greater than a third number, one action is
taken; if they are not greater than a third number, another action is
taken. The ELSE part of the IF conditional statement is optional. If the
condition is true, the program executes the commands following the
THEN statement. If the condition is not true, the program simply skips
all statements associated with the THEN statement and goes to the
next statement line.

This decision-making ability is the basis for all machine
intelligence decisons.

TUTORIALIV-24

DECISION MAKING

TOPICS FOR PROGRAMMERS

Assigning Values: The Assignment Statement

Pascal has two ways of assigning values and it is crucial that you
understand the difference between them.

= is used to assign a value to
constant in the declaration section of
the program.
TaxRate = 0.075

it is also used in conditional
statements such as:

If TaxNow = TaxMaximum THEN
or
¥ X =Y THEN
Otherwise, it is only used to indicate the
Identifier of a user-defined data type.

(You'll leam more about this later.)

1= is used to indicate that the value on the left of the
symbol now equals the value or values on the right.

For example,
TaxToDate = TaxToDate + TaxNow
tells the computer to take the current
value of TaxToDate, add it to the value of TaxNow, and
then let TaxToDate represent the new value.
Note: Use = to define constants, logical relationships, and user-

defined data types. Use := in equations that assign values from the
right side of the equation to the term on the left side.

TUTORIAL IV -25

DECISION MAKING

Conditional Statements: IF-THEN-ELSE

Conditional statements take the following form:

IF a condition is TRUE
THEN perform these commands
ELSE perform other commands

The sample program uses conditional statements to determine which of
two actions it should take. In this program, there are two possible
alternatives depending upon the total amount of tax paid after tax has
been deducted from the paycheck. !f it is more than the maximum, one
set of actions is taken. If it is still less than the maximum, another action
is taken.

Note: Ordinarily, if only one action is taken by each decision, a BEGIN
and END statement is not needed. In the sample program, however, if
the condition is true, 2 actions are taken: the current tax is calculated
and the tax to date is updated. Since a group of commands will be
executed when the IF condition is true, they should all be listed within a
BEGIN-END pair. Otherwise, only the first action in the group would
be associated with the IF statements.

Also note that the statements are separated by semicolons except for
the last statment before END. You never need punctuation before
END. Since this END is just the end of the IF-TRUE part of the
condition, it is not followed by a period. A period would indicate the
end of the program.

When the IF condition is false, the program skips all the statements in
the THEN section and turns control over to the ELSE statements. In
the sample program, there is only one ELSE command executed, so
the BEGIN-END pair are not required. In fact, this program doesn’t
really need the ELSE statement at all. If the condition is not met, the
program skips the THEN statements, moves to the next command line,
and calculates the Tax To Date value by the alternate method.

TUTORIAL IV - 25

DECISION MAKING

Operators: Arithmetic and Relational

Operators are symbols that are used to indicate relationships between
numbers and other items in a Pascal program.

Arithmetic Operafors
A Pascal program can perform the four basic arithmetic operations.

Add
Subtract
Muttiply
Divide

S~ %1 4

When evaluating a mathematical expression, multiplication and division
are performed before addition and subtraction. Thus,

6 + 82 = 10 (not 7)
Remember that in mathematical expressions, "=" is not an operation.
Pascal uses := to assign the value of an expression to a symbol that
represents that expression.
Relational Operators
Relational Operators are used to indicate logical relationships between

items. They are primarily used in conditional statements to indicate
which action the program should take. The 6 relational operators are:

Equalto =
not equal to <>
less than <
greater than >
less than or

equal to <=

greater than or
equalto >=

TUTORIALIV-27

DECISION MAKING

Look again at the sample program. Arithmetic operators are used in the
calculations that determine the values of TaxNow and TaxToDate. The
Relational Operator > is used in the condition statement.

ADVANCED TOPICS

Nested Conditions

In advanced programming, you may find that several complex
conditions determine which action the program should take. In that
case, it is possible to nest IF-THEN-ELSE statements. Simply
replace the ELSE statement with another IF-THEN-ELSE
statement. The logic of this nested condition is illustrated below.

IF condition is true
THEN do x
(OCtherwise perform another test
by replacing the ELSE statement
with another IF statement.)
IF next condition is true
THEN do y
ELSE do z.

It is possible to create complex conditional branches using nested IF-
THEN-ELSE statements, but before you try this technique, see the
section on IF conditions in the Reference Section. It is very easy to
have an ELSE statement inadvertently associated with the wrong IF
statement.

CONCLUSION

In this lesson you have learned how to:

* Assign values to variables
* Write and use conditional statements

In the next lesson, you will learn more about the types of data that a
Pascal program can manipulate.

TUTORIALIV-28

4 INTEGERS AND FOR LOOPS

In the last lesson you learned how 1o assign values to variables and how
to tell the program to make decisions.

In this lesson you will learn:

* how to use the data type INTEGER

* how to use the FOR loop

* how to use 3 predefined functions:
TRUNC, ROUND , and MAXINT

OVERVIEW

This program calculates the average of a series of whole numbers (i.e.
numbers without fractional or decimal parts) that a user inputs. Itis
similar to the previous lesson in that it accepts numbers from the
keyboard and performs a calculation using those numbers.

It is different, however, in that it requests first the number of items to be
averaged. It then requests the numbers to be averaged. The number
of times the request is made depends upon the number of items 1o be
averaged. Next, if a number is not a whole number, the program
converts it to a whole number. Finally, the program computes the
average of the group of numbers.

The program introduces three new concepts: Integers (or whole
numbers), the FOR..DO loop, and the Round statement.

TUTORIALIV-2

FOR LOOPS

THE PROGRAM

This program declares a new type of Variable, the Integer.

it also uses a FOR..DO loop that repeats a series of statements a given
number of times. The ROUND function corrects the user's entry if it is
not a whole number.

PROGRAM Average(lnput,Output);

VAR
XY : Real
Number, Count : Integer;

BEGIN

Wiriteln;

Writeln;

Writeln("Enter the number of *);

Writeln('items to be averaged.’);

ReadIn({Number);

FOR Count := 1 TO Number DO
BEGIN (* Begin FOR loop *)

WriteIn(’Enter a whole number.’);

Readin (Y);
Y = Round (Y);
X=X+Y

END; (* end of FOR loop *)
X := X/Number; (* Calculate the average *)
Writeln('The Averageis ', X :5:2)

END.

Remember to save and compile the program. To run it, delete the .P
extension to the filename.

TUTORIAL IV - 30

FORLOOPS

THE LOGIC OF THE PROGRAM

1. Declare the program.
2. Define the Variables.

* List the variable names and, after a colon () indicate
the type of data, Real or Integer, that they will represent.

3. Request the number of items and read the input.

4. Use the number of items as a control for how many requests will be
made for input.

5. If the user's entry is not an integer, round off the entry.
6. Calculate the average.

7. Print the average to the screen using formatted decimal positions.

GENERAL COMMENTS

This program illustrates several important programming concepts.
Pascal treats integers very differently than it treats real numbers. Your
program should always determine which type of data it is dealing with.
The FOR..DO loop shows how to make the computer repeat a
sequence of actions a certain number of times. Finally, the Round
function corrects any input mistakes the user might make. A good
program tries to anticipate and correct erroneous entries.

TOPICS FOR PROGRAMMERS

Data Types: Real Numbers and Integers

Pascal understands a number of data types. So far, you have used 2 of
them: Real numbers and Integer numbers.

TUTORIAL IV - 31

FOR LOOPS

Real Numbers

Variables that are Real numbers must be declared as such in the
Variables List. The formis:

VAR
X, Y, Z :Real;

X, Y, and Z may be any legal name.

In Lesson 2 you learned about Real numbers. Recall that they are
numbers that contain fractional or decimal values. Integers, on the
other hand, are whole numbers. Kyan Pascal requires that you
distinguish between these two data types very carefully.

Real numbers may be positive or negative and are represented in either
decimal or scientific notation, i.e., 12.8, -15.7, 3.456E+11, or -
2.5555E+4. [If you are unfamiliar with the last two versions, they are
simply scientific notation. It specifies how many decimal places should
follow or precede the number.]

A number in decimal notation must have at least one digit before and
one digit after the decimal point. Very large or very small numbers are
best handled in scientific notation.

The following decimal and scientific notations represent the same
value:

Z = 34555

Z = 3.455E+2

Z = 34555E-2

The + or - 2 after the letter E just indicates how many decimal places the
point should be moved and what direction to move it in.

The range of values that may be assigned to a Real number is from
(+ or -)9.9999999999E-99 to (+ or -)9.9999999999E +99.

Integers

Integers are whole numbers. Pascal can use any Integer between the
range of -32768 and +32767. Integer variables are declared in the

TUTORIALIV-32

FORLOOPS

Variable List. The format of the declaration is identical to that for Real
Numbers:

VAR
Number, Count : Integer;

In the sample program, both types of variables are listed under the term
VAR and are separated by a semicolon. A semicolon also indicates the
end of the Variable List.

It an arithmetic expression is the result of combining Real and Integer
values, it is considered to be a Real number.

When you want to print numbers, either Real or Integer, to the output
device, remember that you must indicate the number of integer and
decimal positions that the value will have. You do this by following the
variable with a colon, the total number of digits that you want printed,
another colon, and the number of decimal positions.

* See Lesson 2 if you don't remember how to do this.
For example, in this lesson, the program prints
numbers up to 5 digits, and reserves 2 decimal
places for fractions.

If the number has fewer digits than the number of spaces reserved for
it, the correct number will appear on the screen, but the program will fill
in the extra spaces with blanks or zeros. If a number in decimal format
has more digits than the number of spaces reserved for it, a run-time
error will occur. That is, you will not learn about the error until the
program is actually run. Run-time errors also occur when an Integer is
greater than 32767 or less than -32768.

A Real, or decimal, number is also limited to 13 significant digits. Writing
a number that requires more than 13 places will not make the number
more accurate. The computer will present the correct number, but it will
fill the digits beyond the 13th place with zeros or blanks. On the other
hand, truly accurate calculations will not be produced if the program
does not take advantage of the full 13 digit capability. Kyan Pascalis
unique in that it can handle figures of this size, so take advantage of this
capability. Most Pascal compilers support less than 8 digits.

TUTORIALIV-33

FOR LOOPS

FOR..DO Loops

The FOR..DO loop is a control statement that causes the program to
execute a series of commands the number of times indicated by the
loop. It format is:

FOR count name := count beginning TO count end DO
BEGIN
statements
END;

Note: A semicolon (;) ends the FOR loop since it is not the end of the
program. Also remember that all statements between the BEGIN-
END pair are separated from each other by a semicolon--except the last
statement before the END.

This command accepts an initial value and repeats the indicated
commands, increasing the initial value by 1 each time the sequence is
executed. When it completes the number of repetitions indicated by
the control value, it moves on to the statement following the END
command.

Integers are most commonly used in FOR loops, although it is possible
to use Real number variables.

The FOR loop can also decrement the loop control variable if you use
DOWNTO instead of TO. The following example is a valid definition of
a control loop:

FOR Count := Number DOWNTO 1 DO

In this example, Number must be greater than or equal to 1.
Otherwise, the FOR loop can not count down to the control number.

ADVANCED TOPICS

Predefined Functions

Kyan Pascal has a number of functions that you may use in computing
values. Three of them are useful in manipulating Real numbers:

TUTORIAL IV - 34

FORLOOPS

Trunc Truncate
Round Round
Maxint Maximum Integer

The sample program used the Round function to round the value
entered by the user to the nearest Integer. This prevented the
program from crashing if the user entered a number with a fractional or
decimal part.

The 3 functions are defined below:

Trunc Truncate eliminates any decimal value
after the decimal point.

Trunc(9.6) becomes 9
Trunc(9.1) becomes 9

Round Round returns the value that is
closes to the decimal number.

Round(9.6) becomes 10
Round(9.1) becomes 9

Maxint Maximum Integer is a Pascal
constant that equals the
largest integer that your computer
can handle. In this edition of
Pascal, it equals 32767.

CONCLUSION

In this lesson you have learned how to:
* work with Integers

* use FOR..DO loops
* use predefined function words

In the next lésson, you will learn how to manipulate text.

TUTORIALIV-35

. FOR LOOPS

(This page left blank for your notes.)

TUTORIAL IV -36

5 STRINGS AND ARRAYS

This lesson infroduces a new type of data: the Character. It shows
how to use this data type to create strings of text. You will leam how to:

* Declare and use the data type: Char

* Use the Reserved Word ARRAY to declare a new data type:
STRING

* Create WHILE loops that repeats a series of actions

* Control the tormat of output

OVERVIEW

Beginning with this lesson the programs become more complex, and
they will often require you 1o use programming techniques introduced
in previous lessons. '

The sample program asks the user to enter words. It then prints a
message telling the user how many words were entered and which is
alphabetically first. Since the size of the list is not known in advance,
the program expects a signal, which in this program is a plus sign (+) to
indicate the end of the list.

The program also shows how to format the output to the screenin a
pleasing display.

THE SAMPLE PROGRAM

This program uses the WHILE loop to determine whether the user
wants to end the list. It also uses an IF loop to repeat the request until
the WHILE condition is no longer satisfied. Finally, it introduces a new
type of data, the ARRAY, which is used to define a String of
characters.

TUTORIAL IV -37

STRINGS AND ARRAYS

PROGRAM FirstWord(input,Output);
(* This program requests a list of words, selects the
alphabetically first word, and counts the number
of words entered. *)
CONST
Signal =

TYPE
String = ARRAY [1..15] OF Char;

VAR
Word, LeastWord : String;
LoopCount : Integer;

BEGIN

(* Each time through the loop increment the counter,

LoopCount, and save the least word *)

Wirite('Enter a word or "+": ');
ReadIn{Word);
LeastWord = Word;
LoopCount := 0;
WHILE Word [1] <> Signal DO
BEGIN
IF Word < LeastWord THEN
LeastWord = Word;
LoopCount := LoopCount +1;
Write('Enter aword or "+":);

Readin(Word)

END; (* of the WHILE loop *)
Writeln;
Writeln;
Writeln(LoopCount: 5, ' words were entered.');
Writeln;
Writeln{LeastWord:25);
Writeln;
Wiriteln(' is alphabetically first.")
END.

TUTORIAL IV - 38

STRINGS AND ARRAYS

After compiling the program, remember to delete the .P filename
extension to run it.

THE LOGIC OF THE PROGRAM

1. Declare the program'’s name.
Assign the "+" to the variable Signal.
Define String as an ARRAY of Characters.

2

3

4. Declare the Variables and their data types.

5. Request and read the first word to be entered.
6

Initialize the variables:
LeastWord = Word
LoopCount := 0

7. Begin the WHILE loop which continues to operate until
a"+" is entered.

-

Compare the entered word to the previous word. Ifitis
alphabetically first, save it as LeastWord.

Increment the LoopCount
Repeat the request message.
Read the next word.

8. Print the formatted output to the screen.

TUTORIAL IV -39

STRINGS AND ARRAYS

GENERAL COMMENTS

This program introduces a new data type that Pascal understands:
Char. Using Characters, it defines another type of data: the String.
Strings allow the program to manipulate text and make comparisons
between entries. After asking the user to enter a word, i.e. a String, of
text, it compares that string to the previous string.

The computer can compare Strings because every letter has a
numeric value that represents it to the computer. The letter "a” has the
lowest numeric value and the letter "z" has the highest numeric value.
The program simply tells the computer to check the value of the first
letter of each word. If it is less than the previous value, this word
becomes the first word. If the letters are the same, the program will
check the next letter. This checking continues until the computer
detects a difference and defines the least value as the firstword.

The two control loops, WHILE and IF, are the brains of the program.
The WHILE loop will continue to request words as long as a + has not
been encountered. The IF loop compares the numeric values of the
current and the previous entry and determines which is first.

The empty Writeln statements and reserved character positions
format the output to the screen.

Note: The [1] after Word in the WHILE loop condition indicates that
the first character of the entry should be checked. Remember that
Word is an ARRAY. You must tell the program which element of the
ARRAY 1o check. This will be explained below.

TOPICS FOR PROGRAMMERS

DATA TYPES: Char, ARRAY, and String

Until this fesson, you have used only two types of data that a Pascal
program understands: Integers and Real numbers. You aiso want to be
able to work with text. The Char data type allows your program to
manipulate this new type of information.

TUTORIALIV-40

STRINGS AND ARRAYS

Char

Char, like Int and Real, is a predefined data type. It tells the computer
to expect a single character. A Char variable can be any printable
letter, number, or symbol; it may also be a space or a <RETURN>. A
number that is represented as a character, however, cannot be used in
arithmelic operations.

A Char data type is declared in the same way as an Integer or a Real
number. If your program expects the user to enter a letter to select an
item from a menu, you might declare a variable, Selection, that will
represent that choice. In the declaration part of the program you would
enter:

VAR
Selection : Char;

- This tells the program to expect a variable called "Selection” and that
the variable will be a character.

Arrays

An ARRAY is a collection of similar types of data. The word ARRAY in
a program tells the computer to expect a specific number of items that it
will group together. It is like alist. It could be a list of the days of the
week or the months of the year. It could also be just a list of letters,
integers, or real numbers..

When you declare an ARRAY, you must tell the computer how many
elements will be init. The computer then associates each element in
the array with its position. The format for declaring an array is:

ARRAY [1..X] OF data type:

The numbers in the brackets indicate the first and last elements in the
array, and an ellipsis (..) separates them. This ellipsis means that all
numbers between the first and last are to be included in the array.
Remember that the number indicates the position of the data element
within the array.

The words "Pascal is fun” comprise an array of 13 elements. Element [I]
is "P", and element [9] is "s".

TUTORIALIV - 41

STRINGS AND ARRAYS

When you declare an ARRAY, you must also indicate what type of
elements it will consist of. The sample program defines an ARRAY of
characters, but you can define an amay of any data type. You can even
declare an ARRAY of an ARRAY.

Strings

A String is a sequence of characters. In Kyan Pascal, strings must be
defined as ARRAYs of characters. The sample program defines
String as an ARRAY of 15 characters. Note that since a String is a
user-defined data type, it must be declared under the heading TYPE.
This signals that you are defining a unique type of data. You must
ggfgmg the TYPE String before you can identify a variable as a String

Once you define a String as an armay of a number of characters, the
String will always be of that length. Jf you use less than the maximum
number of characters, the gap will be filled with spaces. If you try 1o use
more characters, they will be lost.

Re-examine the sample program to see how it defines the data type
String as an ARRAY of 15 characters. It then declares 2 variables,
Word and LeastWord, to be Strings. When you run the program and
enter a word with less than 15 characters, the program works fine. The
missing letters are filled with spaces. If you try to enter a word with more
than 15 letters, the extra characters will not appear.

If you want to assign String or Character values in the body of a
program, they must be enclosed in single quotes. The following
section of a program assigns the word "Help" to a String and the letter
"A"to a Char.

TYPE
Sting = ARRAY [1..10] OF Char;

VAR
Word : Sting;
Letter : Char;

TUTORIAL IV - 42

STRINGS AND ARRAYS

BEGIN
Word := 'Help "
Lefter :='A";

Note that the String defined in the body of the program must contain
the exact number of items that were indicated in the declaration. In this
case, the string contains 4 letters and 6 spaces to fill the 10 elements in
the ARRAY of characters.

More About Reading and Writing

The program in this lesson showed two ways to print messages to the
screen: Write and Writeln. Write prints the text inside the quotes
and leaves the cursor positioned immediately after the text. Writeln
prints the text, but also moves the cursor to the next line; in other
words, it forces a carriage retum. If you want to have the user enter
information on the same line as the text, use Write; otherwise, use the
Writeln command.

Read and ReadlIn get information from the keyboard. Read,
however, only gets 1 piece of data, while Readin gets all the data
entered until RETURN is pressed. Later in this tutorial, you will learn
the most common use of the Read command. For the present, it is
best to use only the Readin statement.

Matching The Declared Data Type To The Input

In your programs, you must always declare the type of data that will be
entered for each variable. You should also insure that the user enters
data of the appropriate type. If the program expects the user to enter
an Integer and he enters a letier, it won't know how to treat the data.

This point is so important, it bears repeating.
Note: When a program reads a variable, the data entered at

the keyboard must be the same type of data that was identified
in the declaration. '

TUTORIAL IV -43

STRINGS AND ARRAYS

For example, your program contains the line Readin(Number) and
the variable, Number, was defined as an Integer. If the user enters
Tom, the computer doesn't know what to do with the data. Similarly, if
you defined Number as a String, a Read(Number) would only get
the T and then it would not know how to treat the letter as a number. A
Readin command would return the entire String, but it still would not
know what to do with an Integer, TOM.

To illustrate the correspondence between data type a variable is
declared to be and the data type of the actual entry. Suppose that the
user enters "123 Ralph” in response to a request for data. The
following table shows what the computer reads, depending upon how
the variable is declared and whether the Read or Readin command is
used.

The following table illustrates what happens when the declared data
type doesn't precisely match the type of data the user enters.

The user enters: 123 Ralph

Command VAR Type What the Program reads

Read Int 1 (the number)
Real 1.0 (the number)
Char 1 (the character)
ARRAY[1..9] 1 (the character)
OF Char

ReadIn Int 123 (the number)
Real 123.0 (the number)
Char 1 (the character)
ARRAY[1..9] 123 Ralph

(the characters)

TUTORIALIV - 44

STRINGS AND ARRAYS

To read the entry "123 Ralph” as a number and a literal string, use 2
variables. Define the first as an Integer or Real number and the second
as an ARRAY OF Char. ReadIn(X1) will get the number 123" and
Readin(X2) will get the string "Ralph”. You may also put the two
variables within a single ReadIn statement, as in ReadIn(X1,X2).

While..Do Loops

The WHILE loop is similar to the IF-THEN-ELSE and the FOR..DO
loops in that it forces the program 1o execute a command or a sequence
of commands. lts format is also similar:

WHILE conditional statement DO
BEGIN
Command 1,
Command 2,
Command 3
END;

The WHILE loop defines a condition, and as long as that condition is
true, it continues to execute. The FOR loop predetermines the exact
number of times a routine will execute. The IF loop can repeat a routine
or begin another one. WHILE loops continue to execute until the
validity of the control statement is FALSE. This test is made before the
WHILE executes. As soon as the test proves FALSE, the program
"falls through™ the loop to the next statement after the end of the loop.
You will learn more about Validity statements in the next lesson.

There is one caution that should be strictly adhered to when you use a
WHILE loop:

Never write a loop that can not exit its
sequence of commands.

The program, at some time, must achieve the condition that will force it
to exit the WHILE loop.

TUTORIAL IV - 45

STRINGS AND ARRAYS

ADVANCED TECHNIQUES

Formatting Output

Advanced pro%rammers use a number of techniques to make
the output to the screen more readable. They may clear the
screen before printing text and they force the output to align
on the monitor in a easy-to-read format.

Reserved Places

In the sample program the output was carefully directed so that it is easy
to read. You should use empty Writeln commands to force blank lines
between output. You can also use the :number option to allocate a
number of spaces for any kind of output. The actual text or value will be
printed at the leftmost extreme of the spaces you reserve forit. Inthe
sample program, 5 spaces are allocated for the number of items
entered. Consequently, the number, if it is less than 10, will be
indented five spaces. Then a blank line is printed, followed by the
LeastWord, which is given 25 spaces to insure that it will be indented
on the line. After another blank line, the statement "is alphabetically
first” contains enough spaces to make it centered under the
LeastWord.

Chr

Every ASCII character corresponds to an Integer from 1to 128. The
function Char returns the ASCII character that corresponds to the
integer indicated in the parentheses. This is what allows the computer
to determine which letter comes before another. For example, Chr (65)
equals the letter A and Char(66) equals the letter B. A listing of Apple Il
ASCI! equuivalents is included in the Appendix of this manual.

Some characters don't print to the screen but control how data is
printed to the screen. If you have an 80 column card, the statement

Writeln(Chr(12));

will clear the screen. If you begin your program with this statement, your
output to the screen will be much more readable.

TUTORIALIV - 48

C
Y

STRINGS AND ARRAYS

CONCLUSION

By now you are more than a beginner programmer. In this lesson you
have learned how to:

* Use Characters, Arrays, and Strings
* Write or read data
* Format output to the screen

The next lesson explains how to make logical decisions using a new
data type: Boolean.

TUTORIAL IV - 47

STRINGS AND ARRAYS

(This page left blank for your notes.)

TUTORIALIV - 48

6 BOOLEAN VARIABLES

This lesson introduces the data type: Boolean. Boolean variables are
either TRUE or FALSE. In this lesson, you will learn how to use:

* Boolean Variables and Equations

* Boolean Operators

* The operators: DIV and MOD

* The order of operations used in evaluating expressions

OVERVIEW

The computer makes decisions based on the logical state of a defined
condition. This logical state is either TRUE or FALSE. Boolean logic is
used to determine the TRUE or FALSE state of complex conditions.

The program in this lesson tests your skill at division. It asks you to
enter a number, a factor of that number, and finally, the other factor. It
then determines whether the second two numbers are correct. Correct
answers are determined by a Boolean equation. if they are correct, the
user is congratulated and asked if he wants to try again. If the answers
are wrong, the user is severely scolded and asked if he wants to make
another attempt.

The program uses two new operators, DIV and MOD, as part of a
Boolean equation, to determine whether the answers are correct or
not. DIV returns the quotient when two numbers are divided. MOD
returns the remainder.

THE SAMPLE PROGRAM

This division lesson uses a large WHILE loop which continues to
execute the program as long as the answer to "try again”is Yes. A
nested IF loop controls the output, which depends upon whether the
answer is right or wrong. The test for the correct answer is a Boolean
variable, Correct.

TUTORIAL IV -49

BOOLEAN VARIABLES

PROGRAM DivLesn(Input,Output);
(* This program gets information from the user and tests
whether the second two numbers are factors of the first *)

VAR
X, W, Z : Integer;
Ans : Char;
Correct : Boolean;

BEGIN
Ans =Y
WHILE Ans = Y DO
BEGIN
Wirite('Enter an Integer);
Readin(X);
Write('One of its factorsis *);
Readin(W);
Wirite(X:3, ' divided by', W:3, ' is");
Readin(2); _
Comect := (XMODW =0) AND (XDIVW =2);
IF Comect THEN
BEGIN
Write('Correct! Another? Enter Y or N);
ReadIn(Ans)
END (* of the THEN clause *)
ELSE
BEGIN
Write('Wrong! . Try again? Enter Y,N');
Readin(Ans)
END (* of the ELSE clause *)
END (* of the WHILE statement *)
END. (* of the program *)

THE LOGIC OF THE PROGRAM

1. Name the program and declare the 3 types of variables: Integer,
Char, and Boolean.

2. Initialize the "Answer" to "Yes."

TUTORIAL IV - 50

BOOLEAN VARIABLES

Initialize the "Answer" to "Yes.”

Begin the WHILE loop which continues to execute as long as the
"Answer" is the lelter Y.

Wiite the requests for data and read the information from the
keyboard.

Define the condilions of a Correct answer, i.e., the first number can
be divided by the second with no remainder.

Begin the IF loop. If the answer is correct, print the results. If it was
not correct, print the reprimand.

Ask if the user wishes to continue. Stop when the user enters N.

Close the BEGIN statements with corresponding END statements.

GENERAL COMMENTS

This program introduces the new data type, Boolean. It also uses two

new funclions: DIV and MOD. These items will be explained in the
"Topics for Programmers” section of the lesson.

For now, you only need to understand that when you define "Correct”
1o be a Boolean data type, you mean that "Correct” can only equal
TRUE or FALSE. In the program, you define the conditions that will
make "Correct” TRUE.

In this program, "Correct” will be true

* if there is no remainder after the numbers
are divided (X MOD W= 0)

AND

* if the 2 numbers the user enters are really
factors of the first number (X DIV W=Z).

Also note the punctuation of the nested loops. A BEGIN statement
requires no punciuation. Elements within the BEGIN statement are

TUTORIAL IV - 51

BOOLEAN VARIABLES

separated by semicolons; but none are required before an END
statement. The END statement requires no punctuation until the end
of the program: that END is followed by a period.

TOPICS FOR PROGRAMMERS

DATA TYPES: BOOLEAN

A Boolean data type always equals either TRUE or FALSE. Touse a
Boolean variable you must first declare the variable identifier as
Boolean; then, in the program body, define the conditions that make it
true. The sample program defines "Correct” as a Boolean variable. In
the program body it states that a division without remainders and a
division yielding a specific number are both required to make a TRUE
condition. Once the condition has been defined, the sample program
uses an IF test which executes one set of instructions if the Boolean
variable is True and another setiif it is False.

Boolean Operators

Boolean expressions use three operators to define conditions:
NOT
OR
AND

These Operators follow the rules of formal logic.

Not -- indicates that the opposite of the condition is true.

NOT True = False
NOT False = True

For example, a Boolean variable that is NOT the True condition
is False. One thatis NOT the False condition is True.

OR -- indicates that if either element in a pair of conditions is True, the
resultis True. Otherwise, it is false. Consequently,

True OR False = True

TUTORIAL IV - 52

BOOLEAN VARIABLES

False ORTrue = True
True ORTrue = True
False OR False = False

For example, Two cars are racing. The race is over (True) when car A
OR car B crosses the finish line. Only one of the conditions needs to
be True for the result to be True.

AND - indicates that both conditions must be True for the result to be
True.

True AND True = True
True AND False = False
False AND True = False
False AND False = False

For example, the environment is clean (True) only when the air AND the
water are clean. If both conditions are not met the environment is NOT
clean.

Use Boolean variables to define logical conditions. Set the condition to
TRUE or FALSE. Then use one of the loop statements to execute
statements as long as the condition is in the logical state you set.
Include a test of conditions within the loop that will change the state of
the logical condition when the loop should end.

DIV and MOD Operators

DIV and MOD are two predefined functions that can be used in Pascal
programs. DIV returns the quotient of one number divided by another.
Its syntax is

ADIVB
MOD retums the remainder of a division. Its syntax is:

AMODB

Forexample,if A = 14andB = 4,thenADIVB = 3and AMODB =2.

TUTORIALIV-53

BOOLEAN VARIABLES

ADVANCED TOPICS

PRECEDENCE OF OPERATORS

You can construct complex equations or logical conditions using the
Arithmetic and Boolean operators.

Remember, however, that the computer follows strict rules that govern
how it evaluates expressions. Operations of greater precedence are
executed before operations of lesser precedence.

The five levels of precedence are:

1st--Highest Precedence 0

2nd level NOT

3rd level *./, AND, DIV, MOD
4th level d + - OR
bth--Lowest Precedence =, <=, >=, >, €, <>

Because parentheses have the highest level of precedence, you can
use them to direct the order of operations within an expression. Any
part of the expression in parentheses will be evaluated first. For
example, 4*(5+1) = 24; but (4*5)+1 = 21. If parentheses are nested,
the innermost pair will be evaluated first: 3*(2+(6/2)) = 15.

When you nest parentheses, always count to make sure that there are
an equal number of *(* and *)" symbols. If they are not equal, you have
left out part of a pair and the expression will not be evaluated correctly.

CONCLUSION

This lesson has introduced you to the concept of Boolean data types.
Since this is only an introduction, you may want to consult other books
for a complete explanation of Boolean logic and how to use it in
programs.

The next, and last, lesson in Part 1 of the Tutorial explains a number of
important principles. When you finish it, you should be ready for the
more complicated -- and more powerful —- uses of Pascal.

TUTORIAL IV - 54

7 SCALAR VARIABLES

This lesson introduces a number of new data types, statements, and
functions. It explains:

The data type: Scalar

The data type: Subrange

The REPEAT..UNTIL statement
The CASE..OF statement

The functions: Ord, Pred, and Succ

* » * *» @

OVERVIEW

Sometimes you may want a variable 10 represent a short list of items.
The variable "Days”, for example, may represent the items: Sunday,
Monday, Tuesday, etc. You can do this by defining the variable as a
Scalar variable. Unlike the other variable declarations, Scalar variables
are not named Scalar; the variable identifier is simply followed by a list
of items, enclosed in parentheses, that it can represent. It is defined
under a TYPE heading to indicate that it is a user-defined TYPE of
data. When the program runs, the variable can contain any of the
elements that were assigned to it in the declaration.

The sample program declares a Scalar type that contains the words
"Yes® and "No," i.e. the variable can represent either of those two
values. It will continue to run only as long as the Scalar variable equals
"Yes".

The program asks the user to enter a hexadecimal number and then
converts it to a decimal equivalent. To do this, it uses a
REPEAT..UNTIL statement that continues to execute until a
condition is met. Within the REPEAT are two IF conditional tests that
determine if the user has finished entering the hexadecimal number.

TUTORIAL IV-56

SCALAR VARIABLES

THE SAMPLE PROGRAM

This hexadecimal 1o decimal conversion program introduces the
CASE..OF statement which is used to assign values from a list to the
designated variable. In this program, the list is the list of decimal
equivalents for the hexadecimal digit entered by the user. The program
contains a formula that keeps track of the value of the position of each
digit. It also uses a Boolean variable to decide whether it should
continue to request input.

PROGRAM HexToDec(Input,Output);

TYPE
YesNo = (Yes, No);

VAR

Digit, Signal : Char;

Number, OldNumber : Integer;
Answer : YesNo; (* ascalarvariable *)
Conlinue : Boolean;

BEGIN
OldNumber := 0;
Wiriteln('Enter the most significant digit');
Write('i.e. the one that begins on the far left.’);
Readin(Digit);

REPEAT (* Start the REPEAT loop *)
CASE Digit OF (* start the CASE list
which takes the Digit
and finds its decimal
equivalent *)

‘0" : Number = 0;
1" : Number = 1;
2" : Number = 2;
‘3" : Number = 3;
‘4" : Number := 4;
'5' : Number := 5;
‘6’ : Number = 6;
‘7T : Number = 7;
‘8" : Number = 8;

TUTORIAL IV - 56

SCALAR VARIABLES

'9' : Number = 9;
‘A’ : Number :=10;
'‘B' : Number =11;
'C' : Number = 12;
‘D' : Number = 13;
'‘E' : Number := 14;
'F' : Number =15
END; (* of the CASE kst *)

OldNumber := Number + OldNumber * 16;
Writeln;

Writeln('ls there another digit’);

Wiriteln('after this one? (Yes or NO) ');

ReadIn(Signal);

IF (Signal = 'Y") OR (Signal = y) THEN
ANSWER = YES

ELSE

Answer = NO;

IF Answer = Yes THEN

BEGIN

Continue := True;
Wirite('Enter the next digit *);
ReadIn(Digit)

END

ELSE
BEGIN
Continue := False
END;
UNTIL NOT(Continue);

Writein;
Wiriteln;
Wiiteln('The decimal equivalentis *, OldNumber:6)
END.

THE LOGIC OF THE PROGRAM

1. Name the program.

2. Define the scalar TYPE "YesNo."

TUTORIAL IV-57

SCALAR VARIABLES

3. Declare the variables:

* Digit and Signal are Char
* Numberis Integer

* Answeris YesNo

* Continue is Boolean

4. Initialize the OldNumber to zero and clear the screen.
5. Print the message requesting information:

* the Writeln writes the text and advances the cursor
1o the next line

* the Write statement positions the cursor at the end
of the text and awaits input.

6. Read the input and compare the item to the CASE..OF list.
* the number read by the ReadIn statement is converted

fo its equivalent in decimal notation. If the user enters an
"A", the value is converted to 10.

7. Calculate the current value of the digit and add it to any pre-existing

values.
8. Askif there is another digit to be entered.
9. Enter the IF loop:

* If another digit is to be entered, indicate this by making the
Scalar variable "Yes." Otherwise, make the variable “"No.”

10. Enter the second IF loop.

* If the Scalar variable is "Yes”, then make "Continue” True
and request the next digit to be entered.

TUTORIALIV - 58

SCALAR VARIABLES

* |f the Scaler variable is "No", then make "Continue” FALSE
and exit the IF conditional test.

11. When the entry is complete, write the results to the screen.

GENERAL COMMENTS

One of the advantages of Pascal is that you can define variable types to
fit your program. In the next part of this manual, "Programming
Techniques,” you will learn how to define complex types of data. This
program, however, introduces the idea of defining your own variables
by using a simple Scalar variable. After defining the TYPE YesNo as
a Scalar list of Yes and No, the program declares the variable Answer
as a YesNO TYPE. The body of the program assigns one or the other
value to the Answer variable to indicate if the user wants to enter more
digits in the hexadecimal number.

The REPEAT..UNTIL statement controls the execution of the
program which continues to request hexadecimal digits UNTIL the
Boolean expression "NOT(Continue)" is False. If this logic seems
convoluted, remember that you want to keep executing the REPEAT
loop until a condition is NOT met.

TOPICS FOR PROGRAMMERS
DATA TYPE: SCALAR

A Scalar variable is actually a list of items. It may represent any one of
those items while the program executes. It must be defined under the
heading TYPE.

The sample program defines the Scalar type YesNo as the list (Yes,
NO). It then declares the variable Answer as a YesNo type. Two
sample Scalar types are illustrated below. Note that the TYPE must be
defined before a variable can be declared as that TYPE.

TYPE
DaysWeek = (Mon,Tues,Wed,Thur,Fri,Sat,Sun);
PayRate = (Regular, Overtime),

TUTORIAL IV-59

SCALAR VARIABLES

VAR
Day : DaysWeek;
Rate : PayRate;

The values or items in the user-defined Scalar TYPE may not be
defined in terms of any other type. In addition, they may not be
characters, strings, integers, or real numbers. They can only be a list of
items. For example, an item in single quotes like ‘A’ or an item like 'Sun’
is unacceptable since the single quotes indicate a character string.

The principle is simple; the elements of a Scalar variable can only be a
list of items which are separated by commas.

The only exception to this rule is explained in the next section on the
Subrange TYPE.

DATA TYPE: SUBRANGE

The Subrange TYPE is a form of the Scalar TYPE because it is a list
of items. It is different, however, because you need to specify only the
first and last items in the range. Obviously, if the subrange is a list of
names, the full list must be defined in a Scalar TYPE. Subranges may
contain integers since the computer understands the list of numbers as
a Subrange of the entire set of Integers it uses. The syntax of the
TYPE Subrange is:

TYPE
Name = firstitem .. Jast item;

The following sample declaration illustrates the use of Scalar and
Subrange TYPES. First a Scalar TYPE is declared. Then a Subrange of
the full Scalar list is identified. Finally, a Subrange of integers is

defined. After the TYPE declarations have been made, Variables are
identified as their respective TYPES.

TYPE

Week = (Sun,Mon,Tues,Wed, Thurs,Fri,Sat);
WorkWeek = Mon..Fr;

Days = 1..7;

TUTORIAL IV - 60

SCALAR VARIABLES

VAR

Date : Week;
WorkDay : WorkWeek;
DayNum : Days;

When the program containing the above declarations executes, the
Variable "Date” may be assigned any one of the items in the Scalar list.
"WorkDay" can only represent Monday through Friday. "DayNum” can
equal any number from 1 to 7. Remember that "Week" is a full Scalar
TYPE, "WorkWeek" is a Subrange TYPE, and "Days" is a Subrange of
Integers.

The elements of the Subrange do not have to be included in
parentheses.

Note: Use a Subrange TYPE to make a list of integers. A Scalar TYPE
cannot contain numbers or integers. This restriction prevents you from
inadvertently redefining a predefined type.

REPEAT..UNTIL

The REPEAT..UNTIL loop is similar to the WHILE loop that you
learned in Lesson 5. The statements inside the loop will continue to
execute until a specific condition is met. The syntax of the statement is:

REPEAT
command 1;
command 2;
command 3;

UNTIL condition;

Notice how the REPEAT UNTIL statement differs from the WHILE
statement. The WHILE statement declares the condition before it
begins to execute commands and continues until the condition is no
longer true. The REPEAT UNTIL statement places the test condition at
the end of the loop. It continues to loop until the test condition does
become true. Since it ends execution when the UNTIL condition is
met, the loop does not requires its own END statement.

TUTORIAL IV-61

SCALAR VARIABLES

CASE..OF

In the sample program, you asked the user to enter a number and then
determined its decimal equivalent. You might have handled that
situation with an entire series of IF tests such as:

Readin(Digit);
IF Digit = 1 THEN
Number = 1;
IF Digit = 2 THEN
Number = 2;

IF Digit = A THEN
Number = 10

Using a series of IF statments takes a lot of time and effort just to
determine which value you want. Pascal uses the CASE..OF
statement when you want to select an item from a list of possible values.
Simply identify the name of the variable between CASE and OF; then
list the possible entries, a colon, and the action to be taken. Remember
to END the list and include a semicolon.

With these principles in mind, look again at the sample program. The
user enters a value that is name "Digit.” The program then sets up a
CASE..OF list. Each possible entry is listed in single quotes and the
value of the variable "Number" is assigned to it. Depending upon the
value of "Digit,” a corresponding value is assigned to “Number.”
"Number” is then used to compute the decimal equivalent.

ADVANCED TECHNIQUES
Functions: ORD, PRED, and SUCC

In Lesson 5, you learned how to use the function Chr. Pascal has
other functions which you can use in your programs. Three of them are
especially useful in dealing with Scalar Data Types. Since the items in a
Scalar data type are declared in a particular order, you can use that order

TUTORIAL IV - 62

SCALAR VARIABLES

in designing your program. The following three commands allow you to
manipulate the items in a Scalar list.

Ord

Each position in the Scalar list implies a number. In the Scalar TYPE ,
we defined as "Week", the first position is occupied by "Sun”, the
second by "Mon", and so on. The Ord function will return the value of
the position of the item in parentheses. Remember, however, that a
computer begins counting with zero. So:

Ord(Sun) will return 0
Ord(Mon) will return 1
Ord(Sat) will return 6

Also, you can use the statement ORD('A’), where A is a character, to
determine the ASCII value of that character.

Succ and Pred

Succ (succeeding) and Pred (preceding) also operate on Scalar lists.
Suc(item) will return the element in the list that follow “item.”
Pred(item) will return the element that precedes it. Using the Scalar
Type we defined as "Week":

Succ(Mon) will return Tues
Pred(Mon) will return Sun

Never, however, try to find an item which precedes or follow the
beginning or ending of the list. it will produce errors. "Pred(Sun)
won't make sense to the computer since nothing comes before Sun in
the list.

If several Scalar types are declared, items in the different lists will have
the same order values. For example, if the days of the week and the
months of the year are declared as two Scalar variables, Sunday and
January will have the same ordinal values.

TUTORIAL IV-63

SCALAR VARIABLES

CONCLUSION

This is the last section of the tutorial which uses sample programs to
introduce you to the basic concepts of the Pascal language.

You have been introduced to the elementary Pascal data types and
most of the command statements.

In this lesson alone, you have learned about

* Scalar data types

* Subrange data types

The REPEAT..UNTIL statement
The CASE..OF statement

The functions: Ord, Pred, and Succ

»

»

»

We have also tried to include some suggestions about what makes a
good program. Unfortunately, some of the sample programs don't

illustrate those techniques. That is because Pascal allows you to define

more than data types. It also lets you define your own procedures and
functions. Good programming technique defines subroutines that the
main body of the program can call whenever it needs them. The next
section of the tutorial will explain how to write your own procedures and
functions, and how to manipulate blocks of information in the form of
records and files.

TUTORIALIV - 64

IV TUTORIAL: PART 2

This part of the tutorial demonstrates the real power of Pascal. It
explains how to define routines that permit you to create subprograms
called Procedures and Functions which your program can call with
a simple command. This section also explains how to define complex
data types. The ability to define routines and declare data types greally
increases the power and complexity of the programs you can write.
Finally, a discussion of pointers shows you how o access memory
locations directly.

In this section you will leam how to declare and use:

* Procedures
* Functions
* Arrays

* Sels

* Files

* Pointers

Procedures and Functions are Pascal's equivalent of subprograms.
They enable the main body of the program to call routines that you have
defined. Arrays, Records, Sets, and Files are data structures
which your program can define, manipulate, and store. Pointers
enable you to control dynamic variables.

* Procedures are a group of instructions that execute a
specific task or execute a group of instructions that peform a
specific task.

* Functions accept values that are passed toit, perform
calculations with those values, and return a value to the main
body of the program,

* Arrays let you store elements of a single type of data,

TUTORIAL V-6

TUTORIAL: PART 2

* Records let you define complex arrangements of data types.,
Sets are used to manipulate data, .

* Files store data sequentially,

* Pointers allow you to access dynamic variables and/or

memory locations and control the values stored in those
locations.

TUTORIAL IV-66

8. PROCEDURES

A Procedure is a subprogram or subroutine consisting of one
command or a set of commands that perform a single task. For
example, you might define a procedure that performs a task by
executing a series of commands. The main program then executes this
task, whenever it is needed, by calling the procedure. This saves you
the trouble of repeatedly defining the operation every time you want
the program to do the same task.

This gives the programmer a very powerful tool. You can write any
number of separate procedures which are executed by the body of the
program--which itself is relatively small. This enables the programmer to
demonstrate the logic of the main program without confusing it with the
details of the subroutines. Have you ever read a BASIC program and
wondered just where you were in it and what it was doing? A good
Pascal program never lets that happen. Because the program is
modular, it is also easier to isolate and fix any "bugs” that it has.

DECLARING A PROCEDURE

The form of a procedure is almost identical to that of a program. It is
identified by the word PROCEDURE and given a name.

important:

1. Do not use a name that is already defined by Pascal (i.e., a
predefined word).

2. Do not choose a name with more than 256 characters.

3. Choose a name that clearly indicates the task it performs. This
makes it easier to understand the program.

4. Any constants, variables, or user-defined data types, not declared
in the main program must be declared in the procedure.

TUTORIAL IV-67

PROCEDURES

5. The sequence of instructions must be encased with a BEGIN/JEND
pair.

There are, however, a few important differences between Program and
Procedures:

1. The END statement of a Procedure is followed by a
semicolon (;) and not by a period.

2. Alist of Parameters may follow the Name of the procedure.
This listis enclosed in parentheses, and it is similar to the
(input,Output) declaration in a Program. This list tells
Procedure what kind of information it will receive from the main
program. Parameters are discussed in detail below.

Here is a sample Procedure that the main program might call to print a
menu that the program frequently uses. Remember that it is not an
entire program by itself.

(*)
PROCEDURE Menu;

BEGIN

Wiriteln;

Writeln;

WritelIn(MENU':15);

Writeln;

Writeln;

Writeln('Press the number of your choice.');
Wiriteln;

Writeln('1. ltem A" 10, 2. Item B":20);
Writeln;

Writeln('3. ltem C': 10, ‘4. ltem D":20);
Writeln;

END;

(*)

Notice that there is no Parameter list in this Procedure. The main
program simply calls Menu whenever it wants 1o print the choices. Also
notice that the Writeln statements use the colon to indicate how much
space 1o save for the text. It produces a cleaner output to the screen.
Finally, after printing the menu, control automatically returns to the

TUTORIAL IV-68

PROCEDURES

place in the main program where the procedure was called from. The
next statements in the program would read the choice and take the
appropriate action.

USING PROCEDURES

Pascal requires that any information used by the main program be
defined before it is called. In general, the order of definitions following
the Program or Procedure declaration is:

Labels (They are discussed in the next lesson)
Constants

User-defined data types

Variables

Procedures and Functions (Functions are the topic of the
next lesson)

Main Program Body

o gRLdMDA

This partial program below illustrates how to call the Procedure defined
above. Notice that the Procedure receives no information from the
main program, which simply calls it to print the menu. This is the
simplest form of a Procedure. Once the Procedure runs, the main
program reads the input and performs a specific task, which would be
written in another Procedure.

PROGRAM CallMenu(Input,Output);

VAR
Choice : Integer;

* *

PROCEDURE Menu;

BEGIN
Wiriteln;
Writeln;
WriteIn(MENU":15);
Wiriteln;
Writeln;
Writeln('Enter the number of your choice.’);

TUTORIAL IV -0

PROCEDURES

Wiriteln;

Writeln('1. ltem A" 10, 2. ltem B':20);
Wiriteln;

Writeln('3. Item C": 10, '4. ltem D":20);
Wiriteln

END;

(* %)

BEGIN

Menu;

ReadIn(Choice);

(*statements which call a Procedure or Function indicated
£ by the Choice selection..*)

ND.

COMMENTS

1. The sample program first declares the Variable item, "Choice,”
which holds the value of the item selected from the menu.

2. Afterthe Variable is declared as an integer for the main program,
the Procedure is defined. Since all it does is print the menu, it
contains no constants or variables of its own. Butit could!

3. Notice the use of the Reserved positions after each itemin the
menu. This lets you control output to the screen and makes the
menu more readable.

This simple Procedure can be very useful. Whenever you want to print
the menu, have the main program simply list the command "Menu.” But
what if you want the main program to communicate some information to
the Procedure or if you want the Procedure to return the results of
some actions it has taken back to the main program? That involves
Parameters, which is the topic of the next section.

PARAMETERS

When a Procedure is to receive information from or return information to
the main program, a Parameter List follows the name of the Procedure.
It is similar to the (Input,Output) segment in a program because it tells

TUTORIAL IV-70

PROCEDURES

the Procedure what kind of information it will expect. This list is
enclosed in parentheses. When the main program calls the Procedure,
it must indicate what values it wishes to pass to the Procedure. It does
this by stating the name of the Procedure and enclosing the
information to be passed to it in parentheses.

An example should clanfy the issues involved. You are writing a long
program that prints text to the screen and you're tired of writing all those
Wiriteln statements to make the output clear. Wouldn't it be easier to
write a Procedure-let's call it Skip--that the program can execute, and in
addition, indicate how many lines to leave blank? The Procedure must
be told to expect an Integer from the program which, in turn, it will use to
produce the desired number of blank lines on the screen.

Such a Procedure is listed below:

* *

PROCEDURE Skip(Number:Integer);

VAR
Count : Integer;

BEGIN
FOR Count := 1 to Number DO
Wiiteln)
END;

(¢)

In the program you could issue a stalement like

Skip(5)

This statement calls the Skip Procedure and tells it that "Number”
equals five. When the Procedure executes, it uses 5 as the Number
which determines the end of the FOR loop. Simple, right? Well almost.
This Procedure doesn't have to return any information to the main
program. What if you want the Procedure to receive information, do
something with the data, and return the new information to the main
program. Then, you must declare another type of data in the parameter
list: a Variable Parameter.

TUTORIAL IV-T71

PROCEDURES

VALUE AND VARIABLE PARAMETERS

The Skip Procedure received one item of data from the main program,
i.e., the number of blank lines to print. It did not alter that value, and it
did nothing to affect the main program. In the parameter list, you simply
indicated that the Procedure should expect an integer that it calls
"Number." This is a Value Parameter.

If you want the main program to feed data to the Procedure, have that
data processed in some way, and then retum it to the main program,
you must declare a Varable Parameter. It's easy to do. Simply precede
the name and type of data item the Procedure should expect with the
variable indicator, Var.

The following Procedure will expect a value that the main program
passes to it, and will associate that value with the name "Number" which
it has been told is an Integer. The Procedure then doubles "Number.”
From now on, when the main program uses the item, "Number,” it uses
a value twice the original value.

* *

()
PROCEDURE Double(VAR Number : Integer);

BEGIN
Number = Number * 2
END;

(* ’)

If Number has been assigned the value 3 and the main program states:
Double(Number)

the identifier "Number” will be equated to 6.

MULTIPLE PARAMETERS

A Procedure can receive any number of data items from the main
program -- as long as it has been told in the Parameter List the name
and type of items it should expect.

TUTORIAL IV -72

PROCEDURES

The only caution in using multiple parameters is that the values listed in
the parentheses with the calling statement must correspond to the
parameters declared in the Procedure’s Parameter List. The foliowing
statement (procedure declaration) identifies a Procedure which
expects four values from the statement that calls it.

PROCEDURE Mult(VAR X, Y: Real; Z: Real; VAR Number: Integer);
The statement in the program's body might be something like this:
Mult(item1, item2, item3, item4);

In this case, the Parameter List in the Procedure tells it that the first
three pieces of data are real numbers and that the fourth is an integer.
Since items 1, 2, and 4 are Variables, if their values are changed during
the execution of the Procedure, the main program will now use those
new values as it continues to run. The third value, however, is merely
passed to the Procedure and is not altered after the Procedure is
executed. '

Note: When the main program passes a value to a Procedure, itis
important that the program has initialized that value before it
determines the actual value to be passed. For example, if the main
program passes a variable named ltem2, it should be assigned a
value before it is passed to the Procedure. This insures that the
variable does not contain any garbage left over from other parts of
the program.

If the program has declared and initialized variables named "ltem1,"
"ltem2,” and "ltem 4," then the following call to a Procedure is just as
valid as the previous Procedure call:

Mult(item1, Item2, 30, ltemd);

This statement passes the values currently represented by "item1,”
“item2," and "ltem4," to the Procedure. Since the Procedure does not
demand a variable in the third position, the call from the main program
indicates a value (i.e., a number, a mathematical expression, or a
variable name). After the Procedure runs, ltems 1, 2, and 4 may be
changed. The value in the third position is unchanged.

TUTORIAL IV-73

PROCEDURES

Finally, the third position may contain any expression that consists
entirely of values that the program already understands. The statement

Mult(ltem1, Item2, ltem2/10, Item3);

is just as acceptable to the Procedure as the previous example. Any
arithmetic operator may be used in defining a Value Parameter.

FORMAL AND ACTUAL PARAMETERS

The procedure and the main program should identify the same
variables by different names. The procedure identifies formal
parameters. The calling statement from the main body of the program
identifies the actual parameters.

Formal Parameters

The Procedure associates the values passed to it by the main program
with the names identified in the parameter list. If a Procedure expects
the three values:

(VAR ltem1, Item2 : Real, ltem3 : Char);

it will accept values from the main program that correspond to those
data types and in the order in which they were declared. It associates
those values with the names “ltem1,” “ltem2,” and “ltem3." (Obviously,
the data names will not be "ltem,” but something more significant.). The
"names” listed in the Procedure’s Parameter list are called the Formal
Parameter List.

Actual Parameters

The main program might have identified certain values as variables with
their own unique names. When a program calls a Procedure, the
variables it passes to the Procedure are known as the Actual
Parameter List. The values that result from any calculations the
Procedure performs will be known to the main program by their actual
names.

TUTCRIAL IV-74

PROCEDURES

When using parameters, the following rules apply:

1. The number of actual paramelers passed by the main program
must exactly correspond to formal parameters declared in the
procedure. ‘

2. The types of data in the actual and the formal parameter list
must be identical. Trying to pass a Real number to a procedure
that expects an Integer will cause the program to crash.

CONCLUSION

This chapter has explained how to declare and manipulate Procedures.
In general, a Procedure is like a Program. It may contain its own list of
consiants, variables, and, on occasion, other Procedures. Procedures
may use a Parameter List to transmit information between the main
program and the individual Procedure.

The next section explains another type of routine, the Function.

TUTORIAL IV-75

PROCEDURES

(This page left blank for your notes.)

JUTORIAL IV-76

9. FUNCTIONS

A Function is a subprogram, or subroutine, that receives values from
the main program or procedure and returns a single value that is
identified by the function’s name.

When the program or procedure calls a function, it passes values, called
Arguments, to that function. Arguments can be sent directly to the
function or through variable or constant identifiers. The function
performs its operations amd assigns the result to a variable identified by
the function’s name. This variable can only be altered by the function
itself and may not be changed outside the function.

For example, a Function named Area receives 2 values from the main
program and calculates the area of a rectangle. If the main program
called the function Area(a,b), and the values of a and b had previously
been determined to be 3 and 4, the function Area would return the
value 12 to the main program.

DECLARING A FUNCTION

A Function declaration resembles a Procedure declaration. Examine
the following declaration of the Function Area.

] *

FUNCTION Area(Length, Width : Real): Real;

BEGIN
Area = Length * Width
END;

¢)

Although a Function declaration may resemble a Procedure, make
certain that you understand the differences.

1. The labelis FUNCTION.

TUTORIAL IV-77

FUNCTIONS

2. The function’s name is foliowed by the equivalent of a Parameter
List. These items are called the Arguments of the function, and
they are enclosed in parentheses. After the Arguments are named
and their data types defined, the computer must be told what type
of data the result of the calculations will yield. To do this, place a
colon (:) after the parentheses enclosing the Arguments, and
define the type of data that the function will yield.

The declaration FUNCTION Area(Length, Width : Real): Real
means that the Function named Area will expect two Arguments.
The first is known as “Length” and the second as “Width." Both of
these values are Real numbers. After the function performs the
calculations indicated in the Function body, the Function Area
returns a Real number to the main program. This number is
identified in the program by the Function name, Area.

3. While Procedures transmit many pieces of data between the main
program and itself, Functions ¢an only transmit one value back to
the main program. That value is whatever the result of its
calculations happens to be.

4. Functions, like Procedures, should be declared before the body of
the main program, but after the definitions of Labels, Constants,
and Varables that will be used in the main program.

5. The Arguments given to the Function in the main program are not
altered by the Function--after all, it just uses them in the calculation.
A Procedure, on the other hand, usually does change the
parameters that were passed to it. .

USING FUNCTIONS

Use Functions to define any set of operations that a program requires.
This gives you a great deal of flexibility in the design of your program.

The sample program below asks the user to input the 3 dimensions of a
solid object. It then uses the Area Function to calculate both the Area
and the Volume.

TUTORIAL IV-78

FUNCTIONS

PROGRAM Math(input,Output);

VAR
Length, Width, Height, Volume : Real,

¢ ‘)
FUNCTION Area(L, W : Real): Real;

BEGIN
Area = L*'W
END;
(¢ *)

BEGIN (* Body of the main program *)
Wiriteln;
Wiriteln;
Wiriteln;
Wiriteln('This program calculates the Area’);
Wiriteln;
Writeln('and Volume using values you enter.');
Writeln;
Writeln;
Wiriteln('The length in inches is: ');
Readin({Length);
Writeln;
Writeln('The width in inches is: *);
ReadIn(Width);
Writeln;
Wiriteln('The height ininches is: ");
ReadIn(Height);
Writein;
Writeln('The Area is ', Area(Length, Width): 4:2,
'square inches.");
Volume := Height * Area(Length,Width);
Writeln;
Wiiteln('The Volume is ', Volume: 5:2,
' cubicinches.’)
END.

TUTCRIAL IV-79

FUNCTIONS

Comments

1.

The program first declares the Variables that it will use. It then
declares the function Area. In parentheses, it indicates the two
Arguments which Area expects to receive. It then declares the
data type of the result. The body of the Function is obvious. Note,
however, that the END statement of the Function is followed by a
semicolon (;) not a period.

The body of the program prints the messages and requests the
input. Notice the way the Program uses the Function. In the first
instance, Area is part of a Writeln statment. In the second, it is
part of the Volume calculation.

A function can be called as part of an arithmetic or relational
statement. A Procedure, on the other hand, always requires a
separate statement. This is because a Procedure often returns
several values through its parameter list.

RELATED TOPICS

Predefined Functions

Kyan Pascal includes a number of frequently used mathematical
functions. You don't have to define them to use them in a program.
That has been done for you. If X is a Real number or an Integer, then:

Abs(X) = the Absolute value of X

Sqr(X) = the Square of X

Sqri(X)= the Square Root of X

Sin(X) = the Sine of X (when X is in radians)

Cos(X) = the Cosine of X (when Xis in radians)
Arctan(X)= the Arctangent of X (the result is in radians)
Ln(X) = the natural logarithm of X

Exp(X) = the result of e, the natural base, raised to

the power of X

TUTORIAL IV-80

FUNCTIONS

The Function Odd

The Odd function can be used to convert Integer data information into
Boolean data. The Argument of the Odd function, however, must
always be an Integer. '

If the Argument of the Odd function is an odd number, the Function
returns the Boolean value True. Otherwise, it returns False.

For example, if the Variable, "Number,” currently represents the Integer
3, the statement Odd(Number) returns the Boolean value True. You
can use this Function to make decisions based on the type of number
the program is manipulating.

CONCLUSION

This section has introduced the concept of Functions and explained
how to use them in your programs. It has explained the differences
between a Function and a Procedure. The next section explains how
to "Nest" Functions and Procedures and introduces the concept of
"Scope.”

TUTORIAL IV-81

FUNCTIONS

(This page left blank for your notes.)

TUTORIAL IV - 82

10. SCOPE AND NESTS

Procedures and Functions may be declared within other Procedures
and Functions. This is called Nesting. In the tutorial lessons, for
example, you learned how to nest IF conditions. If you nest

Procedures or Functions in a program, it is important that you keep track
of all the Variables being sent back and forth between the
subprograms. These Variables possess an attribute known as Scope.
A Variable's Scope indicates the range of the program for which the
Variable contains a valid value.

* A \Variable that has Global scope holds ils value
throughout the entire program.

* A Varable the has Local scope holds its value only
during the part of the program that uses it.

Nesting and Scope are concepts used in a Pascal program. They are
not statements or predefined words.

SCOPE

Scope refers 1o the extent of the program for which a Variable retains
its value. There are two types of Scope:

Global Global Variables are those variables that the main
program declares. They continue to represent values
throughout the program. The actual value may change
as a result of calls to Procedures or Functions. But
whatever actual value they represent, the name that
represents them remains the same.

Local Local Variables are those variables that are declared
within a Procedure or Function and are meaningful only
within that subprogram. The main program, for
example, does not have access to a Local Variable.
You can, however, assign the value of a global variable
10 a local variable (e.g., Local := Global).

TUTORIAL IV-&3

SCOPE AND NESTS

EXAMPLES OF SCOPE

The following program illustrates the concept of Scope. It asks the user
to enter two numbers and then calls a Procedure to reverse their order.
The Global Variables "A* and "B" are used by the main program. The
Local Variable "Y" has meaning only within the Procedure.

PROGRAM Exchange(input,Output);

VAR (* Global Variables *)
A, B :Real;

PROCEDURE ExcVal(VAR X1,X2: Real);

VAR (* Local Varable *)
Y: Real;

BEGIN
Y= X1;
X1= X2
X2=Y

END:;

BEGIN (* Main Program *)
Writeln;
Write('Enter the first number: *);
Readin(A);
Wiriteln;
Wirite('Enter the second number: ');
Readin(B);
ExcVal(A,B);
Wiriteln;
Writeln;
Wiriteln(Now*, A:7:2, 'is first);
Writeln('and *, B:7:2, "is second.’)
END.

TUTORIAL IV -84

SCOPE AND NESTS

COMMENTS

1.

The concept of Scope and the technique of communicating data
between the main program and subprograms are the most difficult
topics you will encounter when using Pascal. If necessary, reread
these comments until you are certain you understand them.

The main program declares the Global Variables "A" and "B." When
Pascal declares any Variable, it sets aside a location in memory and
gives it the Variable's name. Since "A" and "B" were declared by
the main program and are, therefore, Global Variables, any part of
the Program has access 1o the values stored in those locations.

The Procedure, which is a subprogram, can identify its own memory
locations to store the data that it needs. It establishes locations for
"X1" and "X2" where it temporarily stores the values passed to it by
the main program as "A" and "B.” It also reserves a memory
location named "Y" where it stores the value it knows as "X1.”

* "Y"is known as a dummy variable because it is set aside
simply to hold the first value, X1, while the transfer ot X2 to
X1 takes place. If you didn't store X1in Y, the first value, X1,
would be lost when you loaded X2 into X1.

Since "X1," "X2," and "Y" are Local to the Procedure, they are
meaningful only within that Procedure. If the main program tried to
write "Y" or "X1," the program simply would not know what those
values were.

The main program knows the values of "X1* and "X2" only by its
identifiers of "A" and "B." When it writes those Global Variables
after calling ExcVal, the values are reversed.

Bad Programming--an example to avoid

You may have noticed an interesting fact about the declaration of the
Procedure. Since "A" and "B" are Giobal Variables, why not use them
in the Procedure’s parameter list? That would avoid all the confusion
about the "X1" "X2", "A", and "B" variables. In fact, this program would
run just as well if you did substitute "A” for “X1" and "B" for "X2." Try i,
the programs would be identical except that the Procedure would look
like this.

TUTORIAL IV-8

SCOPE AND NESTS

PROCEDURE EncVal(VAR A,B: Real);

VAR
Y : Real;

BEGIN
Y = A
A = B;
Bw=Y

END;

It works. Butit can also make a real mess of things in a long program. |f
you have ever programmed in BASIC, used a variable, run the program,
and found that it crashed or produced nonsense, you can appreciate
why Pascal is very strict about Global and Local Variables. In BASIC all
vanables are Global. If you use a variable frequently, it may have been
altered by another part of the program. Consequently, what you see
when you read a line of BASIC code is not always what you will get.
Pascal tries 1o avoid this.

NOTE: As a general rule, do not use Global Variables to transfer
information between the main program and subprograms. Use either
Functions or procedures with Parameter Lists to convey data between
the main program and the subprograms.

NESTING

As you have seen, a program can contain either a Procedure or a
Function. Similarly, Procedures and Functions can contain any
combination of other Procedures and Functions. This is called
Nesting. The concept is simple, but its results can be very complex.
The main program can call a Procedure which itself contains several
functions. Or vice versa. The combinations are staggering.

Good programming doesn't require convoluted nestings. In fact, if you
find you are writing bizarre, nested Procedures and Functions, you
probably haven't thought out the problem you are trying to solve.

TUTCRIAL IV-86

SCOPE AND NESTS

Nevertheless, it is important to realize that Procedures and Functions
can be nested and that the nesting affects the Scope of the variables
declared within those Procedures and Functions.

* Nesting affects the Global and Local quality
of Varables.

Relative Global and Local Variables

The Variables declared in the main program are Global throughout it.
That s, all parts of the program have access to the values represented
by the Variables. All parts of the program can also change those values.

The Variables declared in a subprogram are local to the subprogram.

If a subprogram contains nested subprograms, the Variables declared
in the main subprogram are Global to all the nested subprograms.
Variables within nested subprograms, however, are not available to
each other. They are Local to each nested subprogram.

Belore discussing an example of nested programs and the relative
Global or Local values of the variables, an old-fashioned outline should
make the distinctions and limitations clear.

I. Main Program
A. Procedure 1
1. Function 1
2. Function 2
B. Procedure 2
1. Function 3
2. Function 4
C. Function A
1. Procedure a
2. Function 5

Now for some complicated logic:

A variable declared in the Main Program is available to every
Procedure and Function in the program.

A variable declared in Procedure 1 is available to Functions 1 and 2.
It is not available to any other Procedure or Function.

TUTORIAL V-87

SCOPE AND NESTS

A variable declared in Procedure 2 is available to Functions 3 and 4,
but not to Procedure 1 or Functions 1, 2, A, or 5.

A variable declared in Function A is available to Procedure a and
Function 5. It is not available to any other Procedure or Function.

A variable declared in Function 1 is not available to any other
Function.

A varnable declared in Procedure a is not available to any other
Procedure or Function.

By now you get the picture. Pascal programmers use the concepts of
Global and Local Identifiers to refer to these conditions.

A Variable or Constant in the main program is Global to the entire
program.

A Variable or Constant in Procedure 1 is Global to Function 1 and
Function 2, but Local in terms of the main program and the other
subprograms.

A Variable or Constant in Procedure 2 is Global to Function 3 and
Function 4, but Local in terms of the main program or any other
subprograms.

A Variable or Constant in Function A is Global to Procedure A and
Function 5, but Local with respect to all other Procedures and
Functions.

That should settle the issue; and an example program should make
everything clear.

An example of NESTING

The following program illustrates the use of nesting. It asks the user to
decide whether to Add, Average, or Subtract two numbers. Next, it
requests the two values. It then calls the Procedure “Choice," which
determines the chosen function. Based upon the selection, the
Procedure picks the right function from a group of nested functions to

" _JORIAL iV-88

SCOPE AND NESTS

perform the appropriate calculations. Finally, the main program prints
the results to the screen.

PROGRAM Calc(lnput Ouptut);

VAR
Pick : Char;
X, Y, Answer : Real;

PROCEDURE Choice(Select: Char; N1, N2: Real);

FUNCTION Sum(Val1, Val2: Real) : Real;
BEGIN
Sum = Valt + Val2
END;

FUNCTION Average(Val1, Val2 : Real) : Real;
CONST
D=2;
BEGIN
AVERAGE := (VAL1 + VAL2)/D
END;

FUNCTION Difference(Vall, Val2 : Real) : Real;
BEGIN
Difference := Vall - Val2
END;

BEGIN (* of Procedure containing nested Functions *)
CASE Select OF
'S' : Answer = Sum(N1,N2);
‘A’ : Answer = Average(N1,N2):
‘D' : Answer = Difference(N1,N2)
END (* of CASE™")
END; (* of PROCEDURE *)

BEGIN (* of Program *)
Writeln;
Writeln;
Wiriteln('This program computes the Sum,’);
Writeln('Average, or Difference of two numbers.’);

TUTORIAL IV-89

SCOPE AND NESTS

Wiriteln;
Wiriteln;
Writeln('Enter S, A,orD : .');
ReadIn(Pick);
Writeln;
Write('Enter the first number:°);
Readin(X);
Writeln;
Write('Enter the second number: ');
Readin(Y);
Writeln;
Choice(Pick, X, Y); (* Call Choice Procedure *)
Writeln;
IF Pick ='S' THEN
Writeln('The sum is ', Answer:5 :2);
IF Pick ='A' THEN
Wiritein('The Average is*, Answer:5 :2);
IF Pick ='D' THEN
Writeln('The Difference is ', Answer:5 :2)
END.

The Procedure Choice contains three nested Functions. The calling
statement from the main program passes the Choice selection through
the variable, Pick. Choice, in turn, selects the appropriate Function
and transmits the two values to the function, which performs the
necessary calculations.

Rather than explain the obvious, a chart should indicate all the
relationships between the Variables and Constants used in the

program.

TUTORIAL IV-90

SCOPE AND NESTS

Table of Relative Scope

IDENTIFIER ~ CONTEXT SCOPE intermsof 'SUBPROGRAM

X MAIN G Entire
Y MAIN G Entire
Answer MAIN G Entire
N1,N2 Procedure G All Functions
L Main
D Average L Average
COMMENTS

1. This program uses a global variable, "Answer," to transmit the
results of the Procedure and the Function it executes to the main
program.

2. If the Functions called by the Procedure were not nested within the
Procedure "Choice,” they could not use the "Char” value which
indicates the Function to be executed.

RELATED TOPICS
Types

Any type of data may be considered to be Global or Local. This
includes scalar data types and Arrays.

Forward References

Kyan Pascal allows you to write programs that call and execute a
Procedure or Function before it has been declared. This is called a
Forward reference. Whenever a forward reference is used in a Pascal
program, you just indicate it as such by including a semicolon and the
term "FORWARD" after the Parameter or Argument list).

TUTORIAL IV-91

SCOPE AND NESTS

The sample program illustrates how to use this technique. It asks the
user to enter 2 numbers.

PROGRAM COMPUTE(lnput Output)

VAR
XY : Integer;

FUNCTION Factor(J: Integer): Integer; FORWARD;

PROCEDURE Bisect(Alpha: Integer; Beta: Integer);
BEGIN
Beta := Beta + Alpha * Factor(Alpha)
END; (* of PROCEDURE *)

FUNCTION Factor;

CONST
SmaliNum = 1;
BEGIN
Factor := SmallNum MOD Z + J;
Y := Factor
END; (* of FUNCTION %)

BEGIN (* MAIN PROGRAM *)

Wirite('Enter an Integer: *);
ReadIn(J);

Writeln;

Wirite('Enter another integer: ");
ReadIn(Y);

Bisect(X,Y);

Wiriteln;

Writeln{'The Answeris ', Y: 2)

END. (* of PROGRAM *)

JTCRIAL IV-92

SCOPE AND NESTS

COMMENTS

1. Note how the program is careful to declare the type of information
that it expects: Xis an Integer and Y is a decimal number. You must
keep items like this straight when designing your program. If you
don't and if you try to pass those values to Procedures or
Functions, the program will crash.

2. The PROCEDURE "Bisect" is able to execute the FUNCTION
Factor because the function has been declared as a FORWARD
Reference before "Bisect” is declared. The FORWARD declaration
must include the formal parameter list. Later, when the FUNCTION
is defined, the parameters and FORWARD declaration are not
repeated.

GOTO: Unconditional Branches

Although it should not be done regularly, Pascal allows you to use
GOTO statements as long as you have labeled the line to GOTO. Many
Pascal programmers will not use a GOTO statement because it violates
the principle of modular, top-down programming. But the command is
available if you need it.

Misusing GOTO statements will not cause the Program to crash. You
can use such statements whenever you want. GOTO statements,
however, promote messy programming techniques and should be
avoided. GOTO enables you to use unconditional branching. The
GOTO command precedes the LABEL that identifies the line that will
receive control.

The following rules govern the use of GOTO statements.

1. The LABEL is an Integer followed by a colon (:).

2. The maximum size of the LABEL is 4 digits.

3. The LABEL must be declared in the proper position immediately
after the Program, procedure, or function declaration.

4. The LABEL must begin in column 1 or 2 of the program.

TUTORIAL V-8

SCOPE AND NESTS

The following program uses GOTO statements to control the sequence
of commands.

PROGRAM GoExample(Input,Output);

LABEL
22, 35;

VAR
A : INTEGER;

BEGIN
A= 0;
22: WRITELN('A =", A: 4),
A=A+1;
IFA<5 THEN
GOTO 22 .
ELSE
GOTO 35;
Writeln(This line is always skipped.’);
35: Wiriteln('The End.")
END.

- o= e e Y T T 11

Labels used in a Function or a Procedure must be declared locally. Do
not try to declare a label in the main body of the program and then try to
use that label in a subprogram. You can use a GOTO to jump forward or
backwards within a subprogram; you can also use GOTO o leave a
subprogram and return to the main program. Do not use the GOTO
statement to jump from the main program to a Procedure or Function.

CONCLUSION

This chapter has introduced a number of principles that determine the
Scope of a variable. It has also shown how nesting affects Scope.
When you write complex programs, always make certain that you are
aware of the Scope of the variables when you try fo use them. Calling a
variable that can not be accessed only leads to problems when you try
to run the program.

“UTORIAL IV-94

11. ARRAYS

An ARRAY is a sequential collection of elements of the same data
type. You can declare an ARRAY of Integers, an ARRAY of Characters,
or even an ARRAY of an Array. Basically, you can declare an ARRAY of
any data type.

This section explains the use of ARRAYS. It demonstrates:

declaring multidimensional ARRAYS
* adding ARRAYS
* passing ARRAYS as paramelers

Think of an ARRAY as a group of consecutive memory locations, each
of which holds one item in the ARRAY. The ARRAY below, for
example, holds 10 items. Notice that each item in the array has an
identifying number below it. “c,” for example, is the 3rd item in the
ARRAY named String.

[Tlelcih|nlilqlule|s]| STRING
12345678 910

DECLARING AN ARRAY
If an ARRAY is part of a User-Defined data type, it should be declared
under the TYPE heading and it must indicate the data type of the
elements. The form of the declaration is:

ArrayType = ARRAY/First .. Last] OF Element Type
A typical declaration of a String that will hold a number of characters is:

Sting = ARRAY[1..10] of Char;

In the above example:

TUTORIAL IV -9

ARRAYS

1. String is the user-defined ARRAY type. Any name may be used
as the ARRAY type identifier, but it should be relevant to the use of
the ARRAY.

2. The Subscripts, which are often referred to as the Index values,
indicate the number of elements in the Array. The first and last
numbers are separated by an ellipsis (..) and the expression is
enclosed in brackets. Each itemin the ARRAY is identified by the
appropriate subscript value.

3. The element type declares the type of data that comprises the
ARRAY. Any predefined or user-defined data type may be used,
but only one data type may compose a single array.

After the ARRAY has been defined as a String, you can declare a
variable as the TYPE String which uses the ARRAY. This declaration
appears under the VAR heading. A typical declaration of a Variable that
is a String appears below.

VAR
Line : String;

After the declaration, the body of the program may use the Variable
"Line" to contain up to 10 characters.

USING AN ARRAY: Strings

As noted above, before you use an Array type, a variable must be
identified as of that type. The Variable name then represents the array,
and that name is used in the program. For an example of single
dimension ARRAYS, refer back to Lesson 5. One of the most common
uses of Arrays is defining a string. The two points to remember about
Strings are:

* |f you define the String as an ARRAY of Char, the String must
contain the exact number of items defined in the ARRAY
declaration.

* If the String entered by the user does not fill the array , the rest
of the array will be filled with spaces;. If the string is bigger than
the array, the last characters in the string will be lost. (Refer

TUTORIAL IV-96

ARRAYS

back to Lesson 5 if you don't understand what these items
mean.)

The following program declares a TYPE identified as "String,” and a
Variable named "Line," as a String Type. It asks the user to enter a
String of data. It then asks for an index value and prints the
corresponding letter from the String.

PROGRAM Locate(Input, Output);

TYPE

String = ARRAY[1..15] OF Char;
VAR

Line : String;

X, Count : Integer,;

BEGIN
WriteIn('Enter a line of no more’);
Wiriteln('than 15 characters.’);
Readin{Line);
Writeln;
Writeln;
FOR Count .= 1 TO 3 DO
BEGIN
Wiriteln;
WriteIn('Enter an Index value from 1 to 15.");
Readin(X);
Wiriteln(Line[X], ' isthe *, X, ' Character in the string.’)

END.

Comments

1. First declare the data TYPE "String” as an ARRAY of 15 characters.

TUTORIAL IV-97

ARRAYS

2. Declare Line as a String type, and "X" and "Count” as Integer
variables.

* X will hold the Index value entered by the user.

* Count keeps track of the number of Index requests that
are made.

3. Line is used to determine the corresponding character in the
String. Single dimension arrays use one index value, enclosed in
brackets, to isolate an element in the string.

MULTIDIMENSIONAL ARRAYS
ARRAYS OF ARRAYS

Multidimensional ARRAYS are easier to illustrate than to explain.
Perhaps the best way to think of a multi-dimensional ARRAY is as a
table that has a number of rows, with each row consisting of a number of
columns. The figure below illustrates a two-dimensional array. Each
row in the ARRAY consists of three data items. One item is loaded in
each of the three columns. There are four rows in the ARRAY.

COLUMN #
A B C

1121715]
213 |12 |4 |
319111151
4113111}

A Multidimensional Array

*<OD

Declaring Multidimensional ARRAYS

There are several ways to declare multidimensional Arrays. The firstis
to declare the ARRAY characteristics of the ROW itself, and then to
declare the numbers of ROWS in the table. The following declares a
row of three Real numbers. Then, it declares a matrix of four ROWS that
will form the table. Finally, it assigns the Varable "Table" to represent
the entire matrix defined by the TYPE "TableType."

TUTORIAL IV-98

ARRAYS

TYPE
Row = ARRAY[1..3] OF Real;
TableType = ARRAY[1..4] of ROW;

VAR
Table : TableType;

The Variable "Table" now represents an empty table that is similar in
outline to the table described above. There are four ROWS of data,
and each ROW can contain three different Real numbers. Note that in
the table each item or value is uniquely identified by the Row and the
Column number of its space. Also note that, at this point, the table itself
is empty. It only consists of an empty four row by three column grid of
spaces.

An alternative method of defining two-dimensional ARRAYS combines
the two TYPE declarations into one statement. The values of the
number of the ROW Array are simply indicated before the number of
items in each ROW. In other words, you are declaring a table of X
ROWS when each ROW consists of Y columns or items of data.

Note: The data type of the items must be the same.

Note: When using a matrix that consists of two values, the first refers
to the ROW, the second to the COLUMN.

In other words, a declaration that consists of:

TYPE
TableType = ARRAY[1..10, 1..7] of Integer;

VAR
Table : TableType;

would set aside, in the computer's memory, an empty table that is ten
ROWS long with each Row consisting of seven columns. Each column,
obviously, can hold one item of data.

TUTORIAL IV -99

ARRAYS

Subscripts or Index Values

When using multidimensional ARRAYS, it is often necessary to access
a specific item in the ARRAY. If you have understood the discussion in
the previous paragraphs, you already realize that you identify any entry
in the two dimensional table by using the ARRAY's identifier and its
ROW and COLUMN coordinates in brackets. In the sample two-
dimensional array that was illustrated previously, the statement:

Writeln(Table [2,1));

prints 3 on the screen. First, it determines the ROW and then the
COLUMN of the table. Then it gets the value stored in that location.
Finally, it prints the item on the screen.

The numbers used in the brackets to indicate the ROW and COLUMN
matrix locations can themselves be variables. This allows you to set up
loops 1o either clear the memory locations, enter new data into each
location, or read and write the information that is already there.

A typical example of using loops to control the entry of data into an
Array is the following program which creates a table of values. It uses
the Variables "Subrow" and "Subcol" to indicate the position in the
Array that will hold each number the user enters.

PROGRAM Matrix(Input,Output);

TYPE
MaxType = ARRAY[1..4,1..3] OF Real;

VAR
Matrix : MaxType;
Subrow, Subcol : Integer;

BEGIN
FOR Subrow := 1 TO 4 DO
FOR Subcol :=1 TO 3 DO
BEGIN
Write('Matrix element *, Subrow: 3, Subcol: 3, 'is:’);
Readin(Matrix{Subrow,Subcol])

TUTORIAL IV - 100

ARRAYS

FOR Subrow =1 TO4 DO
BEGIN
Writeln;
FOR Subcol := 1 TO 3 DO
BEGIN
Wirite('Matrix element in*, Subrow, * °,
Subcol, ‘is *, Matrix{Subrow, Subcol] :7 :3)
END (* Subcol FOR loop *)
END (* Subrow FOR loop *)

END. (* Main Program *)

COMMENTS

1.

Nested FOR loops determine the locations within the Table. The
outer FOR loop keeps track of the current row. The inner FOR loop
keeps track of the number of items in each row. The inner loop
gets three items before passing control to the outer loop which
increments the Row number and begins the process again.

The Variables "Subrow" and "Subcol" are used in both the loop
control statements and the current location in the ARRAY "Table.”
The expression Matrix[Subrow,Subcol] indicates the element of
the Array that is represented by the current values of "Subrow" and
"Subcol.”

The punctuation of the program body may seem confusing. Let's
review the rules:

* Every BEGIN statement must have a corresponding END
statement.

* The END statement that concludes a part of the Program is
followed by a semicolon (;).

* The line that precedes an END statement is NOT punctuated.

* END followed by a period indicates the conclusion of the
Program itself.

TUTORIAL IV-101

ARRAYS

With these rules in mind, look at the punctuation in the sample
program. You should be able to see the logic of the three closing
END statements.

* The "END" statement closes the BEGIN statement in the "FOR
Subcol” loop.

* The next "END" closes the "FOR Subrow" loop. It requires no
punctuation because it precedes the final "END." statement.

4. The output of the program should confirm the distinction between
rows and columns in your mind.

5. The*:7 :2" stalement in the final Writeln assures that each value
will have the necessary space to make the output visually readable
in decimal form.

Adding Multidimensional ARRAYS

You can add the values located in Arrays by first determining the value
in each specific location in the Array, enter or determine the
corresponding value in the second Array, and store the result in a third
Array of like proportions.

The following program asks the user to enter the elements of the first
Array. It then requests the corresponding elements of the second
Array and immediately performs the calculations that produce the third.
This program could write the first array as well as the final array. Note,
however, that it could never print the second Array because it never
exists as a complete entity. When the program identifies the values in
the first Array, it adds the value the user enters and immediately
constructs the third Array.

The program uses the same techniques that you learned in the
previous example to create and write an Array. It then returns to each
value and requests the number to be added to that value. Finally, it
produces the resultant table.

TUTORIAL IV-102

ARRAYS

PROGRAM AddMatrix(Input,Output);

TYPE
MatxType = ARRAY[1..3,1..3] OF Real;

VAR

Matrix, BigMatrix : MatxType;
Subrow, Subcol : Integer;
AddEle : Real,

BEGIN
FOR Subrow =1 TO 3 DO
FOR Subcol =1 TO3 DO
BEGIN
Write('Matrix1 element *, Subrow: 3, Subcol: 3, 'is:);
ReadIn{Matrix [Subrow,Subcol))

END; (* Subcol FOR loop *)

FOR Subrow =1 TO 3 DO

FOR Subcol := 1 TO 3 DO

BEGIN
Wiriteln('Matrix2 element *, Subrow: 3, Subcol: 3, ' is:);
Readin(AddEle);
BigMatrix[Subrow,Subcol] := AddEle +
Matrix[Subrow,Subcol]
END; (* Subcol FOR Loop *)
Writeln;
Wiriteln('The Sum of the two matrices is: ');
Wiriteln;
FOR Subrow = 1 TO 3 DO
BEGIN
Writeln;

FOR Subcol := 1 TO 3 DO
Wirite(BigMatrix{Subrow, Subcol]: 7; 3)
END (* Subrow FOR Loops *)
END. (* Main Program *)

TUTORIAL IV-108

ARRAYS

COMMENTS

1. This programis essentially the same as the previous one. One
difference, however, is the use of the Variable “AddEle" which
holds the value to be added to the item in the first Array.

2. The Array "BigMatrix" is formed by reading the corresponding
value in the Array "Matrix" and adding the user-entered value
"AddEle" to it.

3. The use and punctuation of END statements may seem confusing.
Every BEGIN requires an END. If a calling statement contains only
one command, as in the last “FOR Subcol" command, no BEGIN
statement is needed. Consequently, only one END statement is
needed to end the loop.

4. Remember that no punctuation is necessary before an END
statement--even if the statement,is itself an END statement.

COPYING ARRAYS

If you define two ARRAYS that have the same subscript types and the
same element types, the values of one Array may be copied into the
other with a simple assignment statement.

If the following TYPE and Variables are declared:

TYPE
MatxType = ARRAY[1..3,1..3] OF Real;

VAR
Matrix1, Matrix2: MatxType;

Matrix 1 may be copied into Matrix 2 by the statement:

Matrix2 = Matrix1
Values may be added to a String Array by indicating the index of the
String where the element should be placed and the element to be

added. The following program copies one string into another, alters the
second string, and then prints both.

TUTORIAL IV-104

ARRAYS

PROGRAM AddStrings(Input,Output);

TYPE
String = ARRAY[1..10] OF Char;
VAR
Word1, Word2 : String;
BEGIN
Word1 :='Experience’;
Word2 = Word1;
Word2[7] = 'm';
Word2[8] := 'e’;
Word2[9] := 'n’;
Word2[10]} = '{;
Writeln{Wordl);
Writeln;
Wiiteln(Word2)
END.

COMMENTS

The first word is copied into the second, and then the second is
altered by using index values 1o change specific letters. The letters
are enclosed in single quotes.

Using ARRAYS in Parameters

Often you want to pass information from an Array in the body of the
program to a Function or a Procedure. Simply include the Variable that
indicates the Array in the Parameter or Argument List. You can pass
elements of the Array or the entire Array itself.

If you pass an element of an Array, the Argument List in the
Function or the Parameter List in the Procedure must indicate the
data type of the element being passed.

TUTORIAL IV - 106

ARRAYS

* If you pass an entire Array, you must indicate the name the
subprogram will know the Array by, declare it as a Variable, and
indicate its TYPE.

The sample program below illustrates how Array values may be
exchanged between the main program and subprograms. It creates a
single-dimensioned Array of numbers called “BigArray,” and uses the
variable “Subscript” to identify items within the Array.

The Program also defines two Procedures. The first, called "Exchg,”
receives two items from the Array and reverses their order. Note that
the procedure's Parameter List contains the Variables A and B. which
are declared to be Real numbers. The declaration is similar to
Parameter Lists that you have seen before:

PROCEDURE Exchg(VAR A,B: Real);

The second Procedure, named SortOrder, communicates those
values 1o the first procedure by passing two elements of the Array at a
time. It uses the variable Numindex to indicate which two elements of
the Array to transmit. I does this with the statement:

Excg(SubArray[Numblndex],SubArray[Numbindex+1]);

The second Procedure can transmit items from the Array in the main
program because it receives the entire Array in its Parameter List which
is:

PROCEDURE SortOrder(First,Last: Integer; VAR SubArray
:NumbaArray);

The Procedure’s Parameter List tells it to expect to receive the first and
last items in the sort, as well as the entire Array which it knows as
“SubArray.” The calling statement in the main program calls the Array,
"BigArray.” It passes all this informartion by the statement:

SontOrder(First, Last, BigArray);
The program allows the user to enter numbers. It then asks the user to

indicate the entry number where it should begin the sort and the entry
number which ends the sort.

o

&
Ry

AL 1V - 106

ARRAYS

Note: This program is purely for instructional purposes. If you
indicate more than 6 items in the list to be sorted, the program takes
a long time 1o run. In addition, when you indicate the first and last
entries, use the "Entry Number” as an index to the Array. The
actual number may be bigger than the number of items that the
Array has indexed. If you enter the actual number, you will confuse
the program.

PROGRAM ParamArray(Input,Output);

CONST
MaxNumbs = 150,

TYPE
NumArray = ARRAY][1..MaxNumbs] OF Real,

VAR
First, Last, Subscript : Integer;
BigArray : NumArray;

PROCEDURE Exchg(VAR AB: Real);

VAR
C : Real

BEGIN
C=A
A = B;

B:=C
END; (* of Exchange Procedure *)

PROCEDURE SontOrder(First, Last: Integer;
VAR SubArray: NumArray);

VAR
Numblndex : Integer:
Exchanged : Boolean;

TUTORIAL V-107

ARRAYS

BEGIN
REPEAT
Exchanged := FALSE;
FOR Numblindex := First TO (Last-1)DO
IF SubArray[Numblindex] > SubArray[Numblindex+1]
THEN
BEGIN
Exchg(SubAmray[Numblindex],
SubArmay[Numblindex+1]);
Exchanged = TRUE
END; (* of IF.THEN loop *)
UNTIL Exchanged = FALSE
END; (* of SortOrder Procedure= *)

BEGIN (* MAIN PROGRAM *)

Writeln;

Writeln;

Writeln('Enter a list of numbers to be ordered.’);
Writeln('After each number press RETURN.");
Writeln('Press 0 and RETURN to end.”);
Subscript = 0;

REPEAT

Subscript := Subscript + 1;

WRITE('Entry Number °, Subscript: 3, ' is);

Readin(BigArray[Subscript]);
UNTIL BigArray[Subscript] = 0.0;

Wiriteln{"Order this list between which entries?');
Writeln('Use the Index number, not the value.’);
Write('First : ');

ReadIn(First);
Writeln;
Write('Second :);

Readlin(Last);
SortOrder(First, Last, BigArray);

Writeln;
FOR Subscript = First TO Last DO '
Writeln(BigArray[Subscript]:7 :3, ° Entry Number °,
Subscript:3)

TUTCRIAL IV-108

ARRAYS

Comments

1. The main program creates an Array of up to 150 elements. It then
asks the user to determine the boundaries of the values it will sort.
it calls the Procedure "SortOrder” to conduct the sort, passing the
entire Array as a parameter.

2. "SorntOrder" compares each element in the part of the Array to be
sorted to the item that follows it in the "BigArray.” If the first item is
greater than the second, it calls the Procedure "Exchg" which
reverses the items. It continues to do this until the Boolean
Variable, "Exchanged,” is FALSE.

3. The Boolean Varable, "Exchanged,” is originally set to FALSE. If
the Procedure "SortOrder” determines that the first item is greater
than the second, it calls the Procedure, "Exchg,” and sets
*Exchanged" to TRUE. This forces the Procedure to continue
switching elements of the subarray until all of its elements are less
than the succeeding element. When no further reversais are
necessary, "Exchanged” is allowed to remain TRUE and the
Procedure "SortOrder" ends.

4. Pay special attention to the use of the Subscript variable in the main
Program. It enables the program to access individual items in the
Array. The Numblndex variable is used in the Procedure
"SoriOrder" for the same purpose.

RELATED TOPICS
End of Line

When the user presses the <RETURN> key, the computer reads a
value that signals the end of the line. Pascal labels this value, EOLN.
EOLN is a Boolean Variable and it remains FALSE until the RETURN
key is pressed. It then remains TRUE until additional data is entered
with a Read or Readin Statement. Consequently, you can use the
EOLN value to control input from the keyboard.

The following program illustrates how to use the EOLN value to control
the input of data. The program will accept four words of up to 15
characters in length. It stores each word in a matrix of Arrays, getting

TUTORIAL IV-108

ARRAYS

each word one element at a time until the RETURN key is pressed.
The EOLN value tells the program that the end of a word has been
reached. When the RETURN key is pressed, the program prints the
number of characters entered.

PROGRAM GetWord(Input,Output);

TYPE
WordType = ARRAY[1..15] OF Char;
TableType = ARRAY([1..4] OF WordType;

VAR
Wordindex, Letterindex : Integer;
WordMatrix : TableType;

BEGIN
Writeln;
Wiiteln('Enter 4 words. End each word');
Writeln('by pressing the <RETURN> key:;.");
FOR WordIndex := 1 TO 4 DO

BEGIN
Letterindex = 0;
WHILE NOT EOLN DO

BEGIN
Letterindex := Letter Index + 1;
Read(WordMatrix[WordIndex,Letterindex])
END (* Of WHILE *)
END (* of FOR loop *)
WiriteIn('The preceding word had ', Letterindex: 3, 'letters.’);
Readin
END. (* of Main Program *)

COMMENTS

The program counts each character as it is entered until an End Of
Line (EOLN). Words of less than 15 characters are filled with
spaces. Any characters over 15 are ignored.

TUTORIAL IV-110

ARRAYS

Recursion

Pascal allows you to define a Function or Procedure which calls itself.
This is known as Recursion. |f you use a Recursive subprogram,
make certain that it contains a condition that will allow the subprogramto
return to the main program.

Recursion is used when:
1. logical decisions occur repetitively, or

2. computing a function requires repeating a series of identical
commands, such as

NI = N*(N-1)*(N-2)*...*(N-(N-1))

The following Procedure, "SortAlpha,” is used to sort words in an Array.
If the first word is greater than the second, it calls another Procedure,
“Exchg,” to reverse their order. It then continues to call itself until each
element of the ARRAY is less than the subsequent element.

PROCEDURE SontAlpha(WordMatrix : WordArray);

VAR
Wordindex : Integer;

BEGIN
FOR WordIndex := 1 to Maxword-1 DO
IF (WordMatrix{Wordindex] >
WordMatrix[WordIndex+1]
THEN
BEGIN
Exchg{WordMatrix,Wordindex);
SortAlpha(WordMatrix)
END
END;

TUTORIAL IV-111

ARRAYS

CONCLUSION

This very long section has introduced a data type, the ARRAY, that
allows you to manipulated complex forms of data. It has also shown you
how to: ‘

declare an ARRAY

declare a multidimensional ARRAY

add ARRAYS

copy ARRAYS

pass ARRAYS as parameters

use the End Of Line value to control input
use RECURSIVE calls within a subprogram

* 5 & » » » »

The next section introduces the concept of a RECORD and shows how
to construct ARRAYS of RECORDS.

TUTORIAL IV-112

12. RECORDS

Some units of data are really mixtures of Pascal data types. A date, for
example, is a combination of two different data types and three different
elements. The date "January 1, 1986" is one String of characters,
followed by an integer,, followed by a character, and followed by a
group of Integers. Pascal allows the programmer to define mixed data
types as RECORDS.

This section explains:

* Creating and using records

* Accessing records using the WITH statement
* Arrays of records

* Variant Records

DECLARING A RECORD

A RECORD is a user-defined data type. Consequently, it must be
defined under the TYPE heading in a Pascal program. First, declare an
identifier as a RECORD. Then, declare the names of the items in the
record and indicate their data types. Conclude the RECORD with the
"END;" statement.

The following RECORD, named "DateType," contains three items that
comprise a date. After declaring the data type RECORD, a Variable,
*DateRec," is assigned to that type.

TYPE
DateType = RECORD
Month : ARRAY[1..10] OF Char;

Day : Integer;
Year : Integer
END;

VAR

DateRec : DateType;

TUTORIAL IV-113

RECORDS

Note that the Record !dentifier is followed by an equal sign (=) and the
declaration of the data type RECORD. Semicolons indicate the end of
each item in the Record--with the usual exception of the last item that
precedes the END statement. The entire declaration ends with a
semicolon. '

The items in a Record are called "fields.” The “DateType" Record
contains 3 fields: Month, Day, and Year. The general formatof a
RECORD is:

TYPE
Identifier = RECORD
Field1 = DataType;
Field 2 = DataType;
etc.
END;

A RECORD may define one of its fields as another RECORD. If you do
this, however, the Record that is a field in the main Record must already
be defined. The following RECORD contains a field that is itself a
Record as defined in the previous example.

TYPE
EmployType = RECORD
LName : ARRAY[1..15] Of Char;
FName : ARRAY[1..10] Of Char,
Address: ARRAY[1..20] Of Char;
City : ARRAY[1..10} Of Char,
State : ARRAY[1..10] Of Char;
Birth : DateType
END;

VAR
EmployRec : EmployType;

The Variable "EmployRec" contains 6 fields. The first 5 are Arrays that
hold identifying the employee. The sixth field is a previously defined
Record, "DateType.” It holds the birthdate of the employee.

“JTORIAL IV- 114

RECORDS

Using Records

When a program reads or writes records or fields in record, it must be
told the name of the record and the specific field to be addressed. If
the program uses a record type like the one defined above as an
employee record, the following commands would write the employee’s
last name and birthday.

Writeln(EmployRec.LName);
Wiriteln(EmployRec.Birth);

As you can imagine, addressing multiple fields in a Record requires a
great deal of repetitive programming. Pascal uses a special command,
WITH, which simplifies addressing fields in a Record.

The WITH..DO Statement

The WITH..DO statement allows you to indicate a record identifier.
Once the record has been identified, the program can locate specific
fields in the Record by the field name.

The WITH statement can be used with Records or ARRAYS of
Records. Fields within a Record that are themselves ARRAYS, can
also be addressed using the WITH statement.

The following statemenits illustrate the use of WITH to access fields in
the record EmployRec and write information contained in that record.

WITH EmployRec DO
BEGIN
Wiriteln(LName);
Wiriteln(FName);
Writeln(Birth)
END;

The WITH statement saves a great deal of programming time when you
want to access fields within a Record.

TUTORIAL IV-115

RECORDS

Copying Records

If two records are defined as the same type, it is possible to use a simple
assignment statement to copy one record into another. For example,
after defining the TYPE of RECORD as "DateType,” the foliowing lines
copy the first record into the second.

VAR
DateRec1, DateRec2, : DateType;

BEGIN
DateRec2 := DateRecl;

A Sample Program

The following program illustrates the use of Records. It calculates the
approximate number of days that have elapsed since January 1, 1980.

The program defines a RECORD that consists of the day, the month,
and the year. The day and month are defined as subranges. (See
Section IV, Part I, Lesson 7 if you forgot what a subrange is.) The
Variable "Day" can equal any number from 1 to 31. "Month" can equal
any number between zero and twelve.

The program asks the user to enter a date and calculates the elapsed
time since January 1, 1980.

PROGRAM Elapsed(Input,Output);

CONST

StalDay = 1;
StartMonth = 1;
StartYear = 1980;

TYPE

DateType = RECORD
Day : 1.3%;
Month : 0..12;
Year : Integer

END;

TUTORIAL IV-116

RECORDS

VAR

B : Integer,

DateRec : DateType;

InMonth : ARRAY[1..3] OF Char;

BEGIN
Writeln('Enter MONTH -- upper case, first 3 letters. °);
Readin({InMonth);
WITH DateRec DO
BEGIN
Wirite('DAY =);
ReadIn(Day);
Writeln:
Wirite('Year = ');
Readin(Year)
END;

DateRec.Month = 0;
IF InMonth="JAN’ THEN DateRec.Month = 1;
IF InMonth='"FEB' THEN DateRec.Month :=2;
IF InMonth="MAR' THEN DateRec.Month :=3;
IF InMonth="APR' THEN DateRec.Month = 4;
IF inMonth="MAY' THEN DateRec.Month :=5;
IF InMonth="JUN' THEN DateRec.Month :=6;
IF InMonth="JUL" THEN DateRec.Month :=7;
IF InMonth="AUG' THEN DateRec.Month :=8;
IF InMonth="SEP’ THEN DateRec.Month =9,
IF InMonth="OCT' THEN DateRec.Month := 10;
IF InMonth="NOV' THEN DateRec.Month = 11;
iIF InMonth="DEC' THEN DateRec.Month := 12;

= (DateRec.Day-StartDay)+30*
(DateRec Month-StartMonth)+365*
(DateRec.Year-StartYear);
IF DateRec.Month = 0 THEN
WiriteIn('Format error in Month’)
ELSE
Writeln('Days since Starting Time ="', B: 8)

TUTORIAL IV-117

RECORDS

COMMENTS

1.

The record consists of three groups of integers. "Day” and
"Month" are subrange types, i.e. the numbers indicate the
subrange of Integers that the value can equal. Yearis a regular
integer.

The WITH statement identifies the record that will be used to save
the data. Once the record has been identified, the program can
address the individual fields simply by using their names, i.e. “Day,”
"Month," and "Year."

Note that the subrange for the *"Month" field contains the value of
zero. The program uses this value to check the user's entry in the
“Month" field. It originally sets the value of “"Month" to zero; it then
determines the name of the month entered and assigns the
appropriate number to the "Month" field. If the name does not
equal one of the valid month abbreviations, the value in the
*Month" field remains 0.

The final IF test examines the “Month" field. If it determines a 0, it
prints the error message. Otherwise, it calculates and prints the
elapsed time since the entered date.

Note that the Month field is declared to be a subrange of Integers;
yet, the user enters it as a String. The IF statements then convert
the user-entry to an Integer value. The program could have
declared Month as a scalar collection of the names of the months,
but then you could not directly compare the user's entry and its
Integer value. This is because the String, "JAN" is not equivalent to
JAN, the element in a scalar list.

Arrays of Records

A Pascal program can declare Arrays of any type of data, including
RECORD data types. To create an ARRAY of RECORDS, define the
RECORD TYPE, then define the array Variable as:

Identifier = ARRAY/[subscript range] OF RECORD TYPE.

The format of the declaration is:

TUTORIAL IV-118

RECORDS

TYPE

Recldentifier = RECORD
Field1 : type;
Field2 : type;

E.l.\'lD;

VAR

Arridentifier : ARRAY][subscripts] OF Recldentifier;

Once the array of records has been formed, you may access individual
records by indicating the appropriate index after the ARRAY identifier.
You may identify fields by adding the field name extension. If the
program has declared a Record Type known as DateRec, the following
lines create an ARRAY of DateRec and accesses fields within the first
and second records.

VAR
List : ARRAY[1..10] OF DateRec;

BEGIN :
Wiriteln(Lis{[1].Year);
Wiriteln(List[2).Year);

Since the Array, "List,” contains an Index or Subscript value, it cannot
be identified by using the CASE..OF statement.

A Sample Program

The following program might be used to automate your address book.
it allows you to write and read records which contain name and address
information. The program consists of two procedures: WritePages and
ViewPages.

In WritePages the user enters the number of pages which will be written
to. Datais then entered with a FOR..DO loop keeping track of the array
of records. '

TUTORIAL IV-119

RECORDS

In ViewPages the user enters the number of pages which he or she
wishes to see. The procedure writes the specified pages using a
FOR..DO loop for the array of records.

PROGRAM AddressBook(Input, Output);

TYPE
String = ARRAY([1..60] OF Char;
PageType = RECORD (*Declare Page Record Type*)
Name,
Address,
ZIP,
Phone: String
END;
VAR
Page: ARRAY[1..10] OF PageType;
Start, Ending: Integer;
PROCEDURE WritePages;
VAR Loop : Integer;
BEGIN

Wiriteln('Enter the names/addresses to be written to the pages of the
book’);
Write(‘Enter starting page, space, ending page [i.e., 1 10]?°);
Readin(Start, Ending);
FOR Loop := Start TO Ending DO
BEGIN
Writeln;
Writeln('Page #, Loop);
Write('Name: ');
Readin({Page[Loop).Name);
Write{'Address: ');
ReadIn(Page[Loop].Address);
Write('ZIP: *);
ReadIn(Page[Loop].ZIP);
Write('Phone:);
Readin(Page[Loop].Phone)
END

END;

TUTCAAL IV - 120

RECORDS

PROCEDURE ViewPages;
VAR Loop : Integer;
BEGIN
WriteIn('Look at the names/addresses on pages of the book');
Write('Enter starting page, space, ending page [i.e., 1 10]? ");
Readin(Start, Ending);
Writeln;
FOR Loop:= Start TO Ending DO
BEGIN
Writein('Page Number ', Loop);
Writeln(Page[Loop].Name);
Writein(Page[Loop].Address);
Writeln(Page[Loop].ZIP);
Writeln(Page{Loop].Phone)
END

END;

BEGIN
WritePages;
Writeln;
ViewPages

END.

Variant Records

When you design a program using records, you often find yourself
defining several different record types that have most, but not all, fields
in common. You could define separate records to handle each
situation.

For example, an auto repair shop owner wishes to keep a record of
each repair in order to biil his customers. Unfortunately for the
bookkeeper, clients may be either individuals or companies. in either
case, he needs to know the labor and parts used as well as the invoice
number, the customer's name and address. If the client is a company,
he needs 1o know their requisition number. If the client is an individual,
he needs to know the clients Social Security numbers. The two
records below could handle those conditions.

TUTORIAL IV-121

. RECORDS

TYPE
Sting = ARRAY[1..15] OF Char,

Invoicel = RECORD
InvoiceNum,

Labor,

Paris : Integer;
CusName,

CusAddr . String;
ReqNumb : Integer

END;

Invoice2 = RECORD
InvoiceNum,
Labor,
Parts : Integer;
CusName, o
CusAddr : String;
SocSec : String
END;

NOTE: Similar data types within the RECORD may be listed if they
are separated by commas. You don' need to place eachitemona
single line, but it makes the Record Declaration easier to read.

While there is nothing wrong with declaring as many records as you
want, it does become time consuming. Pascal, however, allows you to
use the CASE..OF statement to include fields that are defined one
way in one case and a different way in another.

The following RECORD declaration illustrates how to combine
alternative data types within a field. It aliow the bookkeeper to combine
the two different records into a single data item.

TYPE
Invoice = RECORD
InvoiceNum,
Labor,

Parts : Integer;

TUTORIAL IV-122

RECORDS

CusName,

CusAddr : String;

CASE Custmr : Integer OF
1 :(RegNum : Integer);
2 :(SocSec : String)
END;

The value after the CASE statement is called a tag Field. It can be any
simple data type, either a character or an integer. The tag field allows
you to indicate the different record fields that can be included in the
RECORD. Use CASE..OF statments to access the variant fields when
either writing to or reading from those fields.

The following program stores a record that is similar to our sample
record. It records the customer's name and address. It then
determines if the customer is a company or an individual by asking the
user to indicate the tag identifier. If the customer is a company, it
requests the requisition number of the order. If the customeris an
individual, it requests the customer's social security number. To access
the variant fields, it uses the CASE..OF statement.

PROGRAM VariantRec(Input,Output);

TYPE
InvType = RECORD
CustName,
CustAddr : ARRAY[1..20] of Char;
CASE Custmr : Integer OF
1. (RegNum : Integer);
EN2: (SocSec : ARRAY][1..11] OF Char)
D;

VAR
Invoice : InvType;

BEGIN
WITH Invoice DO
BEGIN
Wirite('Enter Name :');
ReadIn(CusiName);
Writeln;

TUTORIAL V-123

RECORDS

Write('Enter Address :);
Readin(CustAddr);
Writeln;
Wiriteln('Enter Customer Type');
Writeln(’ 1. Company");
Write(' 2. Individual :);
ReadIn(Custmr);
CASE Custmr OF
1 : BEGIN
Write('Enter Requisition Number:);
Readin(RegNum)
END;
2 : BEGIN
Wirite('Enter Social Security Number: ');
Readin(SocSec)
END
END
END;
Writein(RECORD'": 20);
Wiriteln(’ . 20);
Writeln;
Writeln;
Writeln;
Wiriteln;
WITH Invoice DO
BEGIN
Writeln{'Name : *, CustName);
Wiriteln('Address : ', CustAddr);
CASE Custmr OF
1: Writeln(Req. No : ', ReqNum);
2: WiriteIn('Soc. Sec. No. : ', SocSec)
END
END;
Wiriteln;
Writeln;
Writeln;
Wiritein('End Of Program.')
END.

TUTORIAL IV -124

RECORDS

COMMENTS

1.

The declaration of the RECORD illustrates another way of
formatting the declaration. Since Pascal ignores spaces, you can
separate each itemin a list by a space or a line. The data type must

‘be indicated at the end of the list which is indicated by a colon (:).

The items "CustName" and "CustAddr" could follow each other on

single line; but printing the items on separate lines makes the
declaration more readable.

“"Invoice” is declared to be the user-defined type, "InvType."

The program uses a WITH Invoice DO statement to identify the
Record. After the BEGIN statement, you need to refer to fields
within the Record only by the field name. Close the WITH
statement with an END statement.

The user enters the variable, "Custmr” which is the tag field. A"1"
indicates that the customer is a company and the program requests
the requisition number. A "2" indicates that the customer is an
individual, so the program requests a Social Security number.

CASE..OF statements control the input of information for the
variant field. Note that the CASE statement must be terminated by
its own END statement. This END statement encloses the END
statement that marks the conclusion of the nested BEGIN/END
statements which are associated with each variable field. You must
use BEGIN/END statements when more than one command line
follows the CASE condition.

Wiriteln statements control the format of the output.

Another CASE..OF statement controls the information printed to
the screen. Again note that the CASE statement requires its own
END statement. Since there is only one command line associated
with each CASE condition, a BEGIN/END statement is not required
for the individual CASE conditions.

The program prints output that depends upon the type of record
input during the program requests.

TUTORIAL IV-125

RECORDS

Conclusion

You should now be fairly comfortable with declaring and using
RECORD data types. Variant Records allow you 1o perform extremely
sophisticated operations on complex data elements. The next section
demonstrates how to use another Pascal data type, SET, to access
and manipulate data.

TUTORIAL IV - 126

13. SETS

A SET is a collection of items, called Members. These Members can
be integers or groups of characters. The set can contain up to 256
members. The general format for a Set declaration is:

TYPE
Identifier = SET OF base type;

The base type can be any scalar type: a list of names, a subrange, etc.
Some typical sets are illustrated below.

TYPE
NumSet = SET OF 1.50;

Months = (JAN, FEB, MAR, APR, MAY, JUN, JUL,
- AUG, SEP, OCT, NOV, DEC),

YearSet = SET OF Months;

VAR
Number : NumSet;
Calendar : YearSet;

The Variable "Number" can contain any numbers from 1 to 50. The
Variable "Calendar” can contain any of the designations for the months
of the year. The actual contents of the two sets are declared in the
body of the program. The original declarations indicate what the set
can contain. The program defines what they do contain.

The following sample program illustrates the declaration and use of a
set of numbers ranging from 10-25. It uses a new statement, IN to
determine if a value is included within the Set. (A further discussion of
IN follows below.)

TUTORIAL IV-127

PROGRAM SetDemo(input,Output);

TYPE
NumSet = SET OF 10..25;

VAR
Prime, NotPrime : NumSet;
N : Integer;

BEGIN
Prime = [11,13,17,19,23];
NotPrime := [10,12,14,15,16,18,20,21,22,24,25];
Write('Enter a number between 10 and 25. °);
Readin{N);
IF N IN Prime THEN
Wiriteln('That is a Prime Number.')
ELSE
IF N IN NotPrime THEN
Wiriteln('That is not a Prime Number.')
ELSE
Wiriteln('That is not between 10 and 25.")
END.

COMMENTS
1. The TYPE declaration defines the set type as "NumSet."

2. The Variable declarations define “Prime” and "NotPrime" as
"NumSet" types. Each of these variables can contain integers from
10 to 25.

3. The program then defines the 2 sets, "Prime" and "NotPrime."
Prime contains the prime numbers between 10 and 25. NotPrime
contains the others.

4. Values assigned to the set within the program are contained within
brackets [] and separated by commas (,).

5. The IN statement determines if the value entered by the user is “in"
either of the defined sets.

TUTORIAL IV-128

SETS

6. Nested IF loops determine which type of number is entered by the
user. The second Else statement declares an invalid entry if the
user enters a number that is not belween 10 and 25.

Sets, Arrays, and Scalar Variables

A Set is actually a collection of data, much like an Array. The difference
is that the items in an Array are identified by their position in the Array.
Remember that you can indicate the elements of an Array by using an
Index value to identify the item. You can't do that with Sets.

A Set is also similar to a Scalar Type in that it is not a list of elements.
The difference, however, is that you cannol use subrange declarations
to indicate parts of the set as you can for a Scalar variable.

A Set, unlike Arrays and Scalar Variables, can hold, at any point in the
program, several values.

A Set can be manipulated by using the IN statement and set operators.
(See below.)

The IN Statement

The IN statement allows the programmer to determine whether a value
is included in the defined set. You used it in the first sample program.
The general format for an IN statement is

BEGIN
IF variable IN setname THEN
BEGIN sequence of commands
Command1;
Command2;

END; '
IN determines whether the variable is actually included in the set name

indicated. You can use a TRUE condition 1o define one set of actions
or a FALSE condition to determine another.

TUTORIAL IV-129

SETS

Operations Using Sets

There are three operations that can be performed on Sets. They are
indicated by the + (or Union), * (or Intersection), and - (or Difference)
symbols.

Union returns the total list of elements contained in the sels.
Intersection returns the values that the two sets have in common.
Ditference returns the elements that are not shared by the sets.

In addition to the three set operators which manipulate sets, there are
seven relational operators that allow you to compare sets. These
operators produce either TRUE or FALSE Boolean Values that are
exactly parallel to the arithmetic operators that have aiready been
discussed.

*
Equality Set1 = Sef2
Inequality Setl <> Set2
Subset Set1 <= Set2
Superset Set1 => Set2
Member IN Setl IN Set2

Note that the "Set IN" operator returns the Boolean Value of TRUE only
if Set1 is a member of Set2.

Using Sets

Itis not necessay to declare a Set before you use it in a program. You
can simply declare the Set within the program by including the
elements within brackets. The following program declares the Set of
elements [F,NP]. The contents of the Set, however, must be identified
in a Scalar list before the body of the program. The Set has no
identifier; itis simply defined in the the program.

The program requests grades for each student in a class. If the grade is
F or NP, the screen displays an admonition; otherwise, it displays
congratulations.

TUTORIAL IV-130

PROGRAM Finals(input,Output);

CONST
ClassSize = 30;

TYPE
GradeType = (A,B,C,D,F,P,NP,I);

StuGrade = RECORD
Student!D : Integer;

Grade :GradeType

END; (* of Record declaration *)

VAR
ClassGrade : ARRAY[1..ClassSize) OF StuGrade;
N : Integer;
LetterGrade : ARRAY[1..2] OF Char;

BEGIN
FOR N := 1 TO ClassSize DO
BEGIN
Wiite('Input student ID *');
Readln(ClassGrade[N].StudentiD);
Wiriteln;
Write('input grade :');
Readlin(LetterGrade);
IF LetterGrade = 'F ' THEN
ClassGrade[N].Grade = F;
IF LetierGrade = "NP* THEN
ClassGrade[N].Grade := NP;
IF ClassGrade[N].Grade IN [F, NP] THEN
Writeln('Too Bad. Try Again)
ELSE
Wiiteln('Way to Go!)
END (* of N FOR loop*)
END. (* of main program *)

COMMENTS

1. The GradeType is a Scalar list of elements. -

TUTORIAL IV-131

SETS

2. The Student Record contains two fields: the Student ID and the
actual grade.

3. ClassGrades is an Array of Student Records.
4. The variable N identifies each element in the Array of records.

5. The IF statements assign a value to the Grade field. The value
depends upon the letter grade entered by the user.

6. The grade entered is compared to the SET of characters [F, NP]. |f
the grade is in that SET, the message "Too Bad" is printed on the
screen. Otherwise, the message "Good" is displayed.

SETS AND ARRAYS

Sets are often used to examine the members in an ARRAY. If a specific
item in the ARRAY is included in the set, one action can be taken. If the
item in the ARRAY is not in the set, another action can be indicated.

This program uses the IN statement to compare each grade to the set
of Failed(F), Not Passed(NP), or Incomplete(l) grade types. Finally, it
totals and prints the number of items that fall into any of these
categories.

PROGRAM TestGrades(Input,Output);
CONST ClassSize = 30;
TYPE
GradeType = (A,B,C,D,F,|,P,NP);
GradeSet = SET OF GradeType;
StuGrades = RECORD
StudentID: Integer;
Grades: ARRAY[1..25) OF GradeType
END; (*RECORD?®)

VAR
ClassGrades: ARRAY[1..ClassSize] of StuGrades;
N,M,I: Integer;

Gr: GradeSet;

TUTORIAL iV-132

SETS

BEGIN
1=0;
Gr :=[F,NP,I];
FORN := 1 TO ClassSize DO FOR M :=1TO 25 DO
IF ClassGrade[N].Grades[M] IN Gr THEN
=141
Writeln('In this class *, 1:3, tests were),
Wiriteln('either failed, not passed or incomplete’)
END.

COMMENTS

1. The program sets up an array of 25 test scores for each student
inaclass of 30.

2. The complete list will contain 30 sets of grades containing
25 scores.

3. Subscripts identify the current record. They are also used to
determine the position within each array of grades. "N" indicates
the number of the Record; "M" indicates the individual grade.

4, "I"keeps track of the number of test grades that fall within the SET
of unacceptable scores. If a grade is "F," "NP," or "I,” the count of
unacceptable grades is increased by 1. The total is then printed to
the screen.

CONCLUSION

This section has covered most of the important information that you
need to know in order to use SETS. Obviously, this topic is very large
in scope; if you want to learn more, consult a book that contains an
extensive description of all the commands available in the Pascal
programming language.

The next section introduces the concept of FILES. A file enables your
program to save and retrieve information on a storage device. This
greatly increases the amount of data that your Pascal program can
process.

TUTORIAL IV-133

SETS

(This page left blank for your notes.)

TUTORIAL IV-134

14. FILES

Files allow you to redirect input and output to a storage device -- usually
adisk. This section demonstrates how to:

* WRITE files to a disk

* READ files from a disk

* Create files of records

* Manipulate Random Access Files
* Create TEXT files

GENERAL COMMENTS ON FILES

As you have probably already realized, all this power to manipulate data
isn't worth much if you can't store the information in a disk file. Pascal
uses files to control the input and output of data. The statement after
the Program Name contains the declarations "Input* and "Output” to
indicate the device that reads the information and the device that prints
it. Ordinarily, the input device is the keyboard and the output device is
the monitor screen. A Read or ReadIn statement calls for input from
the keyboard. A Write or Writeln statement prints information to the
screen.

You can use file designations to redirect input and output to a disk file.
You simply have to declare a file and its data type. You can then write to
or read from the file. The only disadvantage of using disk files is that it
slows the program down. It takes a great deal of lime to access, read,
and write information from a disk file.

If you use disk files, remember that they save data in a striclly sequential
format. The first piece of data entered is the first saved. Consequently,
the first piece of data read by a program is the first piece of data that was
entered.

TUTORIAL IV-13%

FILES

Declaring a File

When you want to use a disk file for input or output, you must declare it
in the PROGRAM statement after the “Input” and "Output”
declarations. You can use any name at this point since you will equate
the actual file with its disk identifier in the body of the program. The
following PROGRAM declaration identifies a program that will get input
from the keyboard, print it to the screen, and record it on a disk.

PROGRAM Store(Input,Output, F);

You can use any file identifier to replace the term "F." Just remember
that it must be defined in the body of the program as indicated below.

The program declaration tells the computer that another file is available
for input and output other than the usual Input and Output files.

To enable the program to use the data stored in the disk file, you must
indicate that there is a Variable that contains the information. The
following PROGRAM and VARIABLE declarations enable the program
to access afile, F.

PROGRAM Store(Input,Output, F);

VAR
F : FILE OF Integer;

In this case, all the elements of the file F are integers. A FILE may also
contain Characters, Real numbers, Arrays, Seis, and Records.

Writing to a File

To store data in a disk file, you must first open the file. You do this by
using the Rewrite statement. Rewrite tells the computer to redirect
the output to another file. The Rewrite command takes two
parameters. The first names the identifier of the file it will write to. The
second defines the pathname to the storage device and the filename it
will be saved under.

Note: Rewrite also clears the disk file of any existing data.

TUTORIAL IV-138

FILES

A typical Rewrite statement requires that you enter the name the
program will use to identify the file as well as the name that the disk
directory will use to locate the file on the disk. They are often not the
same. The following declaration indicates the program's file name and
then the Disk's filename. The program will use the first Identifier to run;
it will use the second identifier 1o store and retrieve the data from the
disk.

Rewrite(F, ‘Vol1/Dir1/LST),

This statement tells the computer to prepare a user's data file, F, which
it will write to a file named LST in the directory, DIR1, on the disk
named Vol1. To put the data into the disk file, the program must
contain two more statements. The first stores the data in a file buffer
area; the second writes the buffer contents to the disk file.

FA = Dataltem;
Put(F);

The caret or A symbol is executed by pressing <SHIFT> and the 6 key.

The variable FA is actually a file buffer variable. The variable Dataltem
refers to the data element that will be placed in this buffer. The
Dataltem can be any type of information you want to use: an integer, a
string, or even an entire record. Before the value of an element can be
put into a file, the program must assign a temporary file buffer variable
which holds the data until it is wiitten to the disk.

The Put(F) statement writes the contents of the buffer to the pathname
and file indicated in the Rewrile statement. NOTE: Make certain that
the pathname indicated in the Rewrite statement indicates a volume
and directory that are cumrently mounted on the system. if the program
runs and cannot locate the volume and directory you have specified,
the system will crash.

Remember that when writing to the disk, the first element is stored in
the first position, the second element in the second position, and so
forth.

The only memory space reserved for file variables is for the file buffer
variable. This is because the file itself exists outside the memory space
of the computer which is merely transferring the data to the disk file. (It

TUTORIAL V-137

FILES

the file is a FILE OF Integer, the file buffer is assigned two bytes of
memory to accommodate large integer values. Integers use more
memory than real numbers or other types of data. The size of the

buffer, however, has no direct bearing on the program or how the

programmer writes it.)

In summary, the steps for writing a file are:

1.

Declare that the program uses an external (disk) file as well as the
standard Input and Output files.

Define the filetype in the Variable list as a FILE OF some data type.
Declare an Identifier as the filetype defined in the Variable list.

Open the file with the Rewrite statement which equates the file
identifier with a pathname to the disk file.

Load the data into the file buffer, which is indicated by the A symbol
after the file identifier.

Write the data to the disk file with the Put(Fileldentifier) statement.

Reading a File

Reading a file is similar to writing one. First, the file must be opened for
reading. The command is:

Reset(F,' Vol/Dir/FileName')

This equates the file pathname with a variable that the program uses t0
identify the file.

Before the file can be read from the disk, the computer must be told to
reserve memory space for the read buffer. Like the write buffer, the
read buffer holds the data until the program is ready to use it. As you
might have assumed, a read buffer has exactly the opposite format of
the write buffer. The statement is.

Dataltem = FA;

TUTORIAL IV -138

FILES

After you declare the buffer, use the Get command to retrieve the data
on the disk file. The full statement is:

Gel(F);
The complete sequence of commands is:

Dataltem := F#;
Get(F);

The following diagram illustrates the commands used to write and read
files. The related commands are placed side by side.

Comparison of Wiite and Read
WRITE READ
Rewrite(Fileldentifier, Reset(Fileldentifier,
Pathname) Pathname)
Fileldentifier* := Dataltem Dataltem := Fileldentifier*
Put(Fileldentifier) Gel(Fileldentifier)

Once you know how to retrieve information from a disk file, you have to
be able to tell the program when to stop reading the disk. Pascal uses
an End Of File marker o tell the computer when the file ends.

The END OF FILE Marker

The disk uses a specific value 1o indicate the end of a file. Pascal
recognizes that value as EOF. EOF is a standard Boolean function that
becomes true when the end of a file is reached.

When you are reading from a file, you often don't know how many items
the program should Get. Consequently, you should use the EOF
value as atest to determine whether the program should continue
reading. data from the file. The full sequence of instructions for reading
to the end of file is:

TUTORIAL IV-13

FILES

Reset(F,'/Vol/Dir/FileName')
WHILE NOT EOF (F) DO

BEGIN
Dataltem := F*;
Wiriteln(Dataltem);
Get(F)

END;

The following program illustrates how to write 1o a disk file and then read
that information back into the program. |t asks the user to enter 10
numbers which it stores in the file named, "LIST." The program then
reads the file back into its memory and prints the output on the screen.

Note: ltalics indicate that you should use names that are relevant to your
disk.

VAR

List1 : FILE OF Integer;
Count : Integer;

J : Integer;

BEGIN
Rewrite(List1, ‘Vol/DirA ST');
FOR Count := 110 10 DO
BEGIN
Wirite('Enter a number: ');
Readin(J);
List1* := J;
Put(List1)
END; (* FORloop)
Wiriteln;
Writeln('Here is the output from the disk.');
Reset(List1, '/Vol/DIirA.ST));
WHILE NOT EOF(List1) DO
BEGIN
J = List14;
Wirite(J: 5);
Get(List1)

TUTORIAL IV - 140

FILES

END (* WHILE loop *)
END.

COMMENTS

1.

The program declaration contains a third file, List1. This tells the
program that information will be used from a source other than the
normal Input/Output files.

The file identifier is declared as a variable, List1. Since Integeris a
predefined data type, the program does not need to define the
type. Count regulates the number of FOR loops that control the
user's entries. J holds the value the user enters during each loop.

The program opens the disk file for writing with the Rewrite
statement. The firstitem in the parentheses is the file identifier,
i.e., the name the program uses to the identify the file. The second
item is the pathname to the disk file which actually stores the data.

A simple FOR loop allows the user to enter the 10 numbers.

ReadIn(J) assigns the number entered to the variable J. The value
of J is then assigned to the file buffer, List1A. Once the datais in
the buffer, the number is written to the disk file with the Put
statement. Note that you use the file identifier to indicate what the
buffer should write to the file. You read and write files, the butter
merely holds the data in the process.

Once the file is stored on the disk, the program reads it back and
prints it to the screen.

Reset opens the file for reading. In effect, it forces the position
indicator back to the beginning of the file. It also reidentifies the
disk pathname with the program’s file identifier.

The WHILE loop tests for the End Of File marker. If it does not
register the EOF marker, it retrieves the value stored in the next
disk position and puts it in the file-identifier buffer. That value is
then transferred to the variable J. After writing J (allocating 5
spaces for the number on the monitor), it executes the Get
statement 1o retrieve the next value. This process continues until

TUTORIAL V- 141

FILES

the program senses the EOF marker (i.e., the Boolean EOF
condition becomes true).

9. Note that the control loop regulates how much data the user can
enter; the EOF marker regulates how much data is read back into
the system.

FILES OF RECORDS

Most often, you use disk files to store files of records. The procedure
for creating such files is almost identical to the sample program
described in the previous section. The only difference is that you must
define the record before you declare the filename variable as a FILE OF
the record type you have defined. A beginning Pascal programmer can
find all this naming confusing, but it is strictly logical.

If you keep the following definition i mind, the discussion ol files of
records should be easier to comprehend.

An IDENTIFIER is the name the program uses to label the
data element--whatever that type of element is.
Furthermore, the Variable identifier of a user-defined
data-type must be defined as the type indicated by the
Identitier of that type.

With this principle in mind, the following procedure for declaring a file of
records should not be too confusing. When you want to write a file ot
records:

1. Declare the file identifier in the Program declaration.
PROGRAM RecDemo (Input,Output,ClassFile);
2. Define the structure of the record under the TYPE heading.

TYPE
RecType = RECORD
Name : ARRAY[1..15] OF Char;
Grade : Integer
END;

TUTORIAL IV - 142

FILES

3. Declare another identifier under the TYPE heading to represent
a FILE OF the record-type identifier.

TYPE
StudentFile = FILE OF RecType;

4. Inthe list of variables, declare the file's identifier as a type
indicated by the type-identifier.

VAR
ClassFile : StudentFile

You can now refer to ClassFile in the body of your program. You can
also give the record an identifier. You could declare StudentRec as
the identifier of each record. This allows you to access individual fields
in the record by the usual statements, "StudentRec.Name" and
"StudentRec.Grade".

To write the records to the file, put the individual record into the file-
identifier's butfer and then write the buffer to the disk file. To write an
entire record to the disk, use the following statements.

ClassFile* := StudentRec;
Put(ClassFile);

To read stored records, simply indicate the file-identifier's buffer. For
example, to write the student’s name in each record, you could use the
following statement:

Wiriteln(ClassFile*.Name);

Note that the read statement allows you to include the buffer as part of
the variable. This saves one step. You could, however, also read the
value into a variable and then write the variable. But you don't have to.

The following program uses these principles to write a file of student
names and their grades. It continues to request names and grades until
you tell it to "END." A WHILE loop controls the input. A nested IF loop
stops the input as soon as it senses an "END" indicator. Without the IF
loop exit from the sequence, you would still have to enler a grade
before the controlling WHILE loop realized that "END" had been
entered. This would add an extra record that assigned END a grade.

TUTORIAL IV-143

FILES

PROGRAM RecDemo(input,Output,ClassFile);

TYPE
RecType = RECORD
Name : ARRAY[1..15] OF Char;
Grade : Integer
END;

StudentFile = FILE OF RecType;

VAR
ClassFile : StudentFile;
StudentRec: RecType;

BEGIN
Rewrite(ClassFile, 'Vol/Dir/Class’);
Wiriteln('Building A File');
Writeln(' Y
Wiriteln;
Wiriteln('Enter "END" to stop the list.");
Writeln;
WHILE StudentRec.Name <> 'END 'DO
BEGIN
WITH StudentRec DO
BEGIN
Writeln('Enter Name :');
ReadIn(Name);
IF StudentRec.Name <> 'END 'THEN
BEGIN
WriteIn{'Enter Grade :');
ReadIn{Grade);
ClassFile*:= StudentRec;
Put(ClassFile)
END (*of IF ")
END (* of WITH *)
END; (* of WHILE *)
Wiriteln;
Wiriteln('Record Entry Complete.’);

Reset(ClassFile, '/Vol/Dir/Class’);

TUTORIAL IV-144

FILES

WHILE NOT EOF (ClassFile) DO

BEGIN
Writeln,
Wiriteln;
Wiriteln(Name :‘, ClassFile*.Name);
Wiriteln;
Wiiteln('Grade : *, ClassFile*.Grade: 3);
Get(ClassFile)

END (*of WHILE*)

END.

COMMENTS

1.

The program opens the file, "ClassFile” and identifies the
pathname to the disk file that the file identifier refers to.

The WHILE loop continues to execute until "END" is entered at the
Name request. Note that the "END" constant must contain exactly
15 spaces. Since this is the declared length of the Name field in
the Record definition, any other number of spaces will prevent the
program from being compiled.

The WITH statement identifies the record name, StudentRec,
that the rest of the loop uses.

The variable, Name, contains the student’'s name as entered by
the user.

The IF loop determines the proper action to take. If the Name field
equals anything but "END," the program requests the grade. If the
name field does equal "END," the program exits the |IF loop and
terminates the entry sequence.

After reading the grade, the program loads the file buffer,
ClassFile?, with the entire student record. It then writes the
record to the disk with the Put statement.

Once all the names and grades have been entered, the program
Resets the disk file, again equating the file identifier, ClassFile,
with the pathname to the disk file.

TUTORIAL IV-145

FILES

8. Finally, using the Writeln statements to format the output, the
program enters the WHILE loop which continues to execute until it
reads the End Of File marker.

9. For each record in ClassFile, the program loads the fields into the
ClassFile buffer and prints the information. Note that the data is
loaded into the buffer and printed directly to the screen. The
format of the statement is:

Writeln(Filename*.Fieldname);

10. The Get(Filename) statement forces the program to continue
checking records until it senses the EOF marker.

READING AND MANIPULATING DATA
FILES

As you may have realized if you tried writing your own file storage
programs, wriling to a file is destructive. In other words, the Rewrite
statement that opens the disk file clears the file of any pre-existing data.
Actually, it just resets the position that the program writes to at the
beginning of the file. Consequently, when you begin writing, you over-
write the existing data.

Because of the destructive nature of writing to a file, it is usual to write a
separate program that reads the file you have written. This program can
also manipulate any of the information without destroying the original
file. ‘

The following program illustrates how to read data from an exisling data
file and then manipulate the data. With only a few differences, it is
identical to the second part of the RecDemo program. It reads the file,
ClassFile, and prints the data on the screen. In addition, it flags any
grade less than 65 and prints the message “Failure.” Finally, after
keeping a running total of the grades and the number of grades
entered, it computes and displays the class average.

TUTORIAL IV- 146

FLES

TYPE
RecType = RECORD
Name : ARRAY [1..15] OF Char;
Grade: Integer
END;
StudentFile = FILE OF RecType;
VAR
ClassFile : StudentFile;
StudentRec: RecType;
Count : Integer;
Average : Real;

BEGIN

Count := 0;

Average = 0.0;

Wiriteln;

Writeln('Reading the file": 25);

WriteIn(’ " 25);

Reset(ClassFile, 'Vol/Dir/CLASS');

WHILE NOT EOF (ClassFile) DO

BEGIN
Writein;
Writeln;
Wiriteln(Name :°, ClassFile*.Name);
Writeln;
Wiiteln('Grade :', ClassFile*.Grade: 3);
IF ClassFile*.Grade < 65 THEN

Writeln('FAILURE');

Count := Count+1;
Average = Average + ClassFile*.Grade;
GET (ClassFile)

END; (* of WHILE loop *)

Wiriteln;

Wiriteln;

Average := Average/Count;

Writeln('The class average is: ', Average: 3. 2)

END. '

TUTORIAL IV-147

FILES

COMMENTS

1. The record and file declarations must be identical to those that
declared the disk file.

2. Count keeps track of the how many records are read.

3. Average holds the total value of the individual grades. Mt is divided
by Count to calculate the class average.

4. Note that the grade is declared to be an Integer. The Average,
however, must be a Real number since the sum of the integers is
divided by a number that may result in a fraction.

5. The program reads each record in the file and prints the contents of
the ClassFile buffer, ClassFile*, as determined by the field name.

RANDOM ACCESS FILES

The files discussed so far are known as Sequential Files. Each piece of
data is recorded and read in the order it was entered. As you saw, this
means that every time you run a program that writes records, it erases
any information that already exists in the file. It also means that if you
want 1o read the sixth record in a file, the program must first read records
1 through 5.

Kyan Pascal includes a non-standard statement that allows you to
access any record in the file directly. Such files are called Random
Access Files. The Seek statement allows you to create and read
Random Access Files.

SEEK

When records are saved to a disk, the disk keeps track of where each
record begins and ends. It identifies the records by Record0, Record1,
and so forth, until the End Of File. The SEEK command allows the
progam to read those record delimiters without having to read the entire
record. This allows the program to scan the record numbers and
identify the exact record you want 1o read. The format of the SEEK
command is:

TUTORIAL IV - 148

FILES

Seek(F,N);

F is the file identifier
N is the number of the element in the file

The Seek statement should be followed by a command that writes data
to or reads data from the file. After Seeking the element N in the file-
identifier F, Put or Get the file identifier.

Put(F) writes the contents of the file buffer, which has already
been loaded with the data by the Seek Command,
to the disk file at the position indicated by the Seek
command.

Get(F) reads the contents of the record located at the position
indicated by the Seek statement into the file
buffer.

The following program, SeekDemo, illustrates how to use the Seek
command to either write or read a specific record in afile. It declares a
FILE OF Strings, requests the record number of the string to be
entered, and then asks the user to input the string. Note that this
program allows you to change existing records or append records to an
already existing file. You access the desired record by indicating its
record number. Obviously, you can not read a record that has not yet
been written.

The body of the program uses the Reset command to open the file. If
you Reset a file, you reset the record counter to zero. You can then
either read or write additional records. If the program had used a
Rewrite statement to open the file, the contents of the file would have
been over-written and lost. Consequently, use Rewrite only when
you enter data for the first time. This use of Rewrite insures that no
unwanted data remains in the file if it has been used by previous
programs.

PROGRAM SeekDemo(Input,Output,StrFile);

TYPE :
StringType = ARRAY[1..30] OF Char;

TUTORIAL IV - 149

FILES

VAR
StrFile : FILE OF StringType;
C: Char,

PROCEDURE RdRec; (* Read a Record *)
VAR
i: Integer,;
BEGIN
Write('Enter Record Number : °);
Readin(j);
Seek(StrFile,i);
Get(StrFile);
IF NOT EOF(StrFile) THEN (*EOF true if element empty*)
Wiriteln(StrFile?)
END; (* of RdRec PROCEDURE *)

PROCEDURE WrRec; (*Write a Record*)
VAR
i : Integer;
BEGIN
Write('Enter Record Number: °);
Readin(j);
Wiriteln;
WriteIn('Enter the string of data : ');
ReadIn(StrFile*); (*Assign data to file buffer*)
Seek(StrFile, i);
Put(StrFile)
END; (* of WrRec procedure *)

BEGIN
Reset(StrFile, 'Vol/Dir/Class’);
REPEAT
Writeln;
Writeln;
Wiriteln{'Enter your selection ': 25);
Wiiteln('R-Read W-Write Q-Quit': 24);
ReadIn({C);
IFC="R" THEN
RdRec;

TUTORIAL IV - 150

FILES

IFC=W THEN
WrRec;
UNTILC='Q'
END.

COMMENTS

1.

The program declares a disk file which it knows as StrFile. The
disk file is identified later in the program.

The program includes two procedures. The first handles reading
the file; the second, writing to the file.

After declaring the String TYPE, the file identifier is declared in the
Variable list.

The variable C holds the user's selection of reading, writing, or
quitting.

The main body of the program asks the user to select the desired
procedure. Two IF conditions, nested inside the REPEAT..UNTIL
loop, enable the user to continue writing and reading records until
the Quit command is entered. Remember that a REPEAT..UNTIL
loop continues to execute until a final condition exists. In this
program, the condition is that C equals Q.

If C equals R, the program executes the read record procedure.
RdRec requests the record number and stores it in the variable i. It
then locates the position i in the file StrFile. Next, it Gets the
record indicated. If the position does not indicate the End Of File
marker, the program puts the data into the file buffer and then
writes the buffer to the screen. After writing the record, it returns
control to the REPEAT..UNTIL loop in the main program.

If C equals W, the program executes the write record procedure.
WrRec requests the number of the record to be written.
(Remember that the first record is always 0.) After reading the
record number 10 be written, it requests the string input. The string
the user enters is immediately stored in the file buffer by the
ReadIn(StrFile?) statement. The program then Seeks position
1 on the disk file and Puts the string on the disk.

TUTORIAL IV - 151

FILES

8. One final note: Remember that the file buffer is always indicated by
the carat (A) symbol. When reading a file, you write the file buffer to
the screen with a Writeln(FileNameA?) command. When wiiting a
file, you read the data from the keyboard into the buffer and then
Put the file on the disk with a Readin(FileNameA) command
followed by a Seek and then a Put(FileName) statement.

TEXT FILES

Because files often consist entirely of text, Pascal has a standard type
of file called Text. ltis predefined as Text = FILE OF Char

To use a Text FILE, include the filename in the program declaration and
then declare its data type in the Variable list as Text. The following
slatements create a text file named Word.

PROGRAM (Input,Output,Word);

VAR
Word : Text;

The advantage of using Text files is that the input and output .
commands are simpler than those used for other types of files. After
declaring the file's identifier and associating it with a pathname to the
disk file with the statement

Rewrite(Fileldentifier, 'Vol/Dir/FileName'),
you can write to the disk file with the command

Write(Fileldentifier, Textldentifier);

For example, to write a string of text that has been identified as
Comments to a file named Word, use the statement

Wirite(Word, Comments);
This simple command replaces the two statements which ordinarily put

the contents of the string into the buffer and then write the buffer to the
disk file:

TUTCRIAL 1V - 152

FILES

Word* = Comments;
Put{(Word);

Just as it is easier to write text files to a disk file, it is also easier to read
them. The read command is

Read(Fileldentifier, Textldentifier);

To read a file named Word into a text variable named Comments, use
the statement

Read(Word, Comments);

This single command replaces the two commands that put the file
contents into the buffer and then print the butfer to the screen:

Comment = Word?;
Get(Word);

The following program lets the user enter a string of 100 characters and
saves the data in a disk file. The structure of the program is obvious; it
declares the text file and the string that holds the user's input. It then
opens the file for writing, requests and reads the input, and then writes
it to the disk file. To show what it has written, it reopens the disk file for
reading, reads the file, and then displays it on the screen.

PROGRAM WordProc(Input,Output,Word);

TYPE
StringType = ARRAY[1..100] OF Char;

VAR

Word : Text;

Comments : StringType;
BEGIN

Writeln;

Writeln;

Rewrite(Word, ' Vol/DirANord1');

Wiriteln('Enter text);

Wiriteln;

Readin(Comments);

TUTORIAL IV-153

FILES

Wiiteln('Saving the file’);
Wirite(Word,Comments);
Writeln;
Writeln('Now reading the file’);
Reset(Word, 'Vol/Dir/Word1°);
Read(Word, Comments);
Wiriteln{Comments)

END.

COMMENTS

1. Note that the Writeln statement still writes to the screen and that
‘ReadIn gets data from the keyboard.

2. The Write(Word, Comments) statement writes the text,
identified by Comments to the disk file, identified in the program
as Word.

3. The Read(Word, Comments) statement gets the data from the
disk file identified as Word and loads it into the string Comments.

4. A simple WriteIn({Comments) statement prints the text on the
screen.

CONCLUSION

This section provides only an introduction to the use of files in a Pascal
program. It has illustrated how to write and read a few types of files. For
more detailed explanations and illustrations of the use of files, consult a
Pascal textbook. It should explain different techniques for updating
existing files. Just keep in mind the unique capabilities of Kyan Pascal
when you read the text.

The next chapter explains how to use Pointers to access locations in
memory. Pointers let you Peek and Poke information into the
computer's memory locations; they also allow you to create lists that can
keep track of the location of each element in the list.

TUTORIAL IV-154

15. POINTERS

A Pointer is a variable that points to a location in memory. Because of
this special property, pointers can be used to create larger and more
flexible data representations (data-structures) than have previously
been discussed.

This chapter will explain the concept of pointers and how they are used
in the memory of the computer. This chapter will also show how to use
pointers to:

Read values directly from memory locations
Wirite values directly to memory locations
Create new pointers using the NEW command
Create a linked lists to form a data base

Clear Pointers using the Dispose command

L » » » »

POINTERS AND MEMORY
-- AN EXPLANATION

Normally, the computer keeps track of where it stores information, so
that you don't have to. For example, if you write the lines of code

VAR

Count : Integer;
BEGIN ~

Count = 54;

the computer sets aside a place in memory named, Count, and stores
the number 54 in that location. With these lines, we told the computer:
"Find an unused portion of memory that will hold an integer, then give
that portion of memory the name Count, then put the value 54 in the
area named Count.”

In this example, we could say that the variable name Count is a pointer,
since it points to an area of memory. The reason we don:'t call a variable

TUTORIAL IV-1%

POINTERS

name a pointer is two-fold; it points to only one location in memory, and
the variable's contents are a value rather than an address of a location in
memory.

So what's an address of memory location? Good question. Think of the
memory locations of the computer as a long line of boxes. Each box is
identified by a number, and the boxes are numbered so that the next
box has a number that is one higher than the last box. Then the
address is the number of the box. For example, if one box was labeled
10001, then the next box would be labeled 10002, and one after that
would be 10003. In this example, the addresses are 10001, 10002
and 10003. In summary, an address is the identifying number of a

m location (box).

So, instead of holding a value, pointers hold the address of a memory
location. Because pointers hold addresses, we have some control over
the area of memory which pointers will point to.

To illustrate the concept of pointers, let's create one. We know that we
can define a pointer which points the computer to a location in memory.
But, to be useful, we must tell the computer what our pointer is pointing
at. We can have our pointer point to an integer, a character, a record
field, or any other defined data type. For this example, lets have our
pointer point to an integer. To declare our pointer to the computer, we
would say

VAR
Ourpointer : Alnteger;

By doing this, we are assured that no matter what address we give
Ourpointer, the contents of the memory locations at that address are
interpreted as an integer.

Please note that Ourpointer actually looks at two memory locations.
This is because we told the computer that we are pointing to an integer,
and all integers are two memory locations (bytes) long. Therefors, if the
computer is to make sense of what it sees in the memory location
pointed to by Ourpointer, it must consider both bytes. Expanding on
this, any time a pointer points to a data-type which is more than one
byte in length, the computer must look at the pointer location plus all
the following memory locations which are required to store an item of

TUTORIAL IV - 156

POINTERS

that particular data type. (Note: Please refer to Chapter V, Page 11, for
more information on the storage requirements for different data types).

In our example, Ourpointer points to an integer. If Ourpointer has the
address 10001, then the computer will look at locations 10001 and
10002 (two bytes). If Ourpointer were pointing to a record which was
ten bytes long at location 10001, then the computer would look at
locations 10001 through 10010. If Ourpointer were pointing to a
character at location 10001, then the computer would look at only
location 10001 (i.e., character data types are only one byte long). You
may wish to look at the figures below.

Var Qumpointer : Alnteger (Two byte:
Ourpointer ===> 10001: The computer looks
at two memory
10002 : locations.
Var_Qumointer2 : *Record (Four b lon
Ourpointer ===> 10001:
10002 : The computer looks at
four memory
10003 : locations.
10004 :
i ;. AChar
Oumpointer ===> 10001: The computer looks

at only one location.

POINTER

Now you know what pointers do and how they work. In this section we
will explain how to use pointers, and why they are particularly useful in
reading from or writing to specific memory locations.

Standard Pascal contains no provisions for allowing a programmer to
create a pointer which points to a specific memory location. However,

TUTORIAL IV -167

POINTERS

Kyan Pascal contains an extension to the standard Pascal syntax which
allows you to do this. This extension is called POINTER and it is used in
the following syntax.

Pointerldentifier := POINTER(MemoryLocation);
All memory locations must be given in their decimal representations.

Once a pointer is given the address of a memory location, that location
can be read from or written to.

Using Ourpointer from last section, here is what Ourpointer looks like
after it is first declared:

Ourpointer ===> 2277

Ourpointer points nowhere in particular because it has not yet been
given any value. But, after we say:

Ourpointer := POINTER(300);
Ourpointer looks like this:

Ourpointer ===> 300
Now that Oumointer points to a specific location in the computer's
memory, we can read or write to that location.
Reading from Memory Locations
In the example below, we declare the pointer to be pointing to an
integer. Next, using the POINTER command, we point the pointer at
location 10001. Then, using the WRITE command, we display the

contents of the memory locations 10001 and 10002 in integer form
(don't forget integers are two bytes long).

TUTORIAL IV - 158

POINTERS

Program OurExample1 (output);

VAR
Locate : *integer;

BEGIN
LOCATE = POINTER(10001) ;
WRITE (Locate”)

END.

If you are familar with the PEEK command used in BASIC, then you will
recognize the similarity between this program and the PEEK command.
Both read the contents of specific memory locations.

Writing to Memory Locations

The following program declares Locate to be a pointer to an integer.
Using the POINTER command, Locate is once again given the address
10001. But, unlike the last example, the statement

Locate? :=65;

changes the contents of locations 10001 and 10002 instead of reading
them.

Program OurExample2;

VAR
Locate : Ainteger,;

BEGIN
Locate := POINTER(10001) ;
Locate® =65

END.

This program performs the same function.
Compare this program with OurExample! and the way the Locate®

variable is used (notice the caret at the end of the pointer name).
Locate® is the way the computer represents the contents of the

TUTORIAL IV-159

POINTERS

memory locations pointed to by Locate. Thus if in the WRITE statement
in the first example was replaced by

Count := Locate?;
WRITE (Count) ;

not only would the contents of locations 10001 and 10002 have been
displayed, a copy of those contents would have been assigned to the
variable Count (assuming of course, we also declared Count as a
variable).

USING SPECIAL MEMORY LOCATIONS

If you consult an Apple technical reference manual, you will find that
many memory locations are reserved for specific system functions. The
following program illustrates how to use pointers to access these
special locations and functions. The more you learn about these
locations, the more control you will have over the operation of your
program and over the computer itself.

In the Apple 11, lle, and lic, location 1024 tells the computer where to
access the upper left-hand corner of the screen, which is 40 characters
wide (80 characters with a high resoluction monitor) by 24 characters
tall. Using the POINTER statement, you can instruct the computer to
print characters across the first line of the screen. Itis beyond the
scope of this section to explain how characters are stored in memory,
but each letter requires one byte of memory. Therefore, the program
sets up an Array of Characters, declares a Pointer for the Array, Assigns
the Pointer with location 1024, and finally uses a loop to print each
character to the screen. By varying the value assigned to the Pointer,
you can control exactly where the data is printed on the screen.

TUTORIAL IV-160

POINTERS

PROGRAM AlphaScreen;
(* Fill top line of 40 column display with inverse @'s *)
TYPE

Screen = ARRAY[1..40] OF CHAR;

VAR
Charmem : AScreen;
1 : Integer;

BEGIN
Charmem : Pointer(1024);
FORI:=1T0O40DO
Charmem’[l] .='@"
END.

COMMENTS

1. After declaring the data types and variables, the body of the
program sets the pointer "Charmem" equal to the first screen
position, 1024.

2. The FOR loop controls the output of the 40 characters.

3. The characters get put directly into screen memory because the
address at which the program thinks the array will be stored
coincides with video screen memory. (This is because we told it to
in step 1).

Memory Locations Beyond the Size of Maxint

Depending upon the size of your computer, you may want to address
memory locations that are greater than the actual Integer value that

Pascal can use. This value, a predefined constant known as MaxInt, is
32767 with Kyan Pascal. If you want to address locations greater than

TUTORIAL V- 161

POINTERS

that number, the equivalent of that address is a negative number
calculated by subtracting 65536 from the desired memory location.
The formula is

Equivalent address = Memory Location - 65536

For example, if you want to Assign the Pointer Variable Locate with
memory address, 40000, you need to first find the negative equivalent
of 40000 with the formual. The resulting value is -25536. This number
would then be used in place of 40000. The following statement
assigns this value to the Pointer Variable Locate:

Locate := POINTER(-25536);

NEW

Imagine how difficult it could be trying to keep track of each pointer, and
making sure that none of the variables those pointers pointed at
overlapped in memory. Well, relax, you don't have to! We don't have to
be concerned with exactly wher in memory a pointer points, as long as it
points to the data-type we are concerned with. In situations like these,
we use the NEW command. Here is the syntax:

NEW (Pointeridentifier): ;

The NEW command works by finding an unused area of memory that is
large enough to hold the data type the pointer points to. It then gives
the address of that area to the pointer. Finally, it sets aside this memory
so that it is not overlapped by any variables or pointers. The memory
set aside by the computer for storage of pointer variables is commonly
called the "HEAP". Consider the following lines of code:

VAR
Locate : *nteger;
Letter : AChar;

BEGIN
NEW. (Locate) ;
NEW (Letter) ;

TUTORIAL IV - 162

POINTERS

After the pointers are declared, they look like this:

Locate ===> ?777?
Letter ===> 7777

This is because they are uninitialized and could point to any location.
However, after the NEW commands, the pointers look like this:

Locate ===> [:j
Letter ===> []

Notice that we don't know where in memory these pointers are. But we
do know that Locate points to an integer (two Bytes, remember) and
that Letter points to a character.

Because of the way the NEW command works, we cannot use the
Letter pointer to look at the locations Locate is pointing to. Note also
that these fields are uninitialized; they most likely contain garbage until
they are given a value. In the next section, we will show you how a

" linked list can be made using the NEW command and a record field.

POINTERS AND LINKED LISTS

In addition to using Pointers to access memory locations, you can also
use them to identify the position of items in a data base list. This allows
you to create lists of different types of data, and have each itemin the
list contain a pointer to the next or previous item. You can then access
each item and decide what the program should do with it. The example
used in this section is a very elementary list, using a simple record data-
type; but you can imagine how complex the data base can become.

When using linked lists, remember a few important points:
1. Since a Pointer is used to indicate the location of each item in the

list, you must use the New statement to load the Pointer with an
unused location.

TUTORIAL IV-163

POINTERS

2. Linked lists are entered into memory as they occur in the program.
This means that the first item entered will be the last item read when
the program retrieves the list.

3. Toindicate the first ilem entered on the list as the last item that will
be found when reading the list, you must use a statement called
NIL. It is like a reverse End Of Line or End Of File indicator. You
can tell the program to read back through the list until it finds a NIL
statement.

AN EXAMPLE OF A LINKED LIST

This sample program creates a linked list of Names and appointment
dates. Each entry in the list is linked by a Pointer to the next item. The
record itself is also located by a Pointer.

The Pointers are identified as Pointer-Types, and two variables are
declared as Pointers. The first, Appointm, points to the memory
location that stores the record; the second, Pt, stores the memory
location of the linking Pointer. NIL is used to identify the first item in the
list since it is the last item read when the program returns to examine the
list.

When the program reads the list of appointments, it reads the last entry
first. The pointer in that entry indicates the location of the previous
entry, and so forth, until the pointer contains the NIL value.

PROGRAM Points(Input,Output);

TYPE
String = ARRAY[1..15] OF Char;
Appointer = *AppointRec; (* Pointer Type *)

AppointRec = RECORD
Person : String;
Date : String;
Link : Appointer

END;

VAR
Appointm, Pt : Appointer; (* Pointer Variable *)

TUTORIAL IV-164

POINTERS

BEGIN

Writeln;

Wiriteln;

Pt .= NIL;

New(Appointm);

Write('Enter Name:);
Readin(Appointm*.Persony);

Writeln;

Write('Enter Date *);
Readin{Appointm*.Date);

Appointm*.Link := Pt;

Pt := Appointm;

New(Appointmy);

Appointm*.Person := 'Bob " (* Note: There must be exactly

Appointm*.Date :='02 - 05 - 86"; 15 characters between the

AppointmA.Link := Pt; quotes or a "Wrong Type"
error will result *)

Pt := Appointm;

New(Appointm);

Appointm*.Person := 'David Brandes °;

Appointm*.Date :='02 - 06 - 86';

AppointmA.Link := Pt;

Writeln;

Wiriteln;

Wiriteln('The Appointments are: ');

COMMENTS

1. The program declares a String data-type which holds the name of
the person in the Record.

2. The Pointer data-type is identified as Appointer. It is declared
to be an MAppointRec data-type. Remember that Pointers do not
have to be declared as Variables; they can also be declared as data-
types, with variables defined by that data-type.

3. A Record is declared which contains the fields: Person, Date, and

Link.

TUTORIAL V- 165

POINTERS

4. The Variables, Appointm and Pt, identify variables of the Pointer
type.

5. The program uses the Node identifier, AppointmA, to indicate the
memory location where the actual record is stored. It appends the
field identifier to that name to specify the actual record item.
Because it uses the Node identifier, the program does not need to
indicate the Record Identifier.

6. The format of each record first sets the variable, PT to the previous
Pt value. It then defines the Person and Date fields. Each of these
must contain a specific number of places because of the length of
the Strings defined in the TYPE declarations.

7. Each record first identifies the value of the Pointer, Pt, which
points to the previously saved record. Since the first record can not
point 10 a previous record, the variable Pt in that record equals NIL.
Successive Pointers are equated to the previous Link field.

8. After defining the Pointer value of each record as the location
indicated by the previous Pointer in the variable, Appointm, the
record assigns a new memory location for the next record. It then
defines the elements of that record and equates the Link field with
the existing value of Appointm.

To read the list defined in this program, use the following statements
which read the list until the program finds a NiL Link-indicator. When
reading the list, the Pointer, Appointm, will always indicate the
location of the previous record until it reads the NIL indicator. To read
the previous record, equate the variable, Pt, with the Appoint?.Link
field; then equate that field with the previous Pt value. The result is
that each equation identifies the next field to be read.

TUTORIAL IV - 166

POINTERS

The following lines read each record in the list back into memory. Once
the record is read, it is printed to the screen. The read sequence
continues until the NIL value is read in the Pt field.

BEGIN
Write(Appointm*.Person);
Wiriteln{Appointm*.Date);
Pt := AppointmA.Link;
Appointm = Pt

END

Once you can read and write information to specific locations in
memory, you need to be able to tell the computer to forget that
information. The Dispose command performs that task.

DISPOSE

When you reserve space in memory to store Pointers and Nodes,
those locations continue to hold the values stored in them even after
the items they refer to are no longer used by the program.
Consequently, when you are finished with Pointers, you should clear
the memory locations that holds their values. The Dispose command
performs this task.

The syntax of the Dispose statement is:
Dispose(Pointeridentifier);
If you forget to Dispose of saved Pointer values, you occupy memory

spaces that can be allocated to other variables. The Dispose statement
thus frees space for the user program.

CONCLUSION

This section has explained the use of Pointer Variables access memory
locations. Pointers are used to read and write values directly into
memory. They are also used to locate elements in a data-base list of

TUTORIAL IV-167

POINTERS

items. For more information on using Pointers, refer to a standard
Pascal manual.

The discussion of linked lists has barely scratched the surface of this
important topic. We recommend that you refer to a textbook on
structured data types for a thorough investigation of this powerful
programming tool.

If you have mastered all the concepts and techniques illustrated in the
Tutorial, you should be fairly comfortable with programming in the
Pascal language. From now on, use your intuition to solve problems.
Experiment. If you need to refresh your memory about the structure of
speciﬁci commands or statements, consult the reference section of this
manual.

TUTORIAL IV- 1656

