
THE SHELL

- sh.l -

SHELL Aztec C65

Chapter Contents

The SHELL ... shell
I. The file system ... 4

1.1 File names 7
1.2 The current directory .. 8
1.3 Directory-related builtin commands ... 9
1.4 Miscellaneous file-related commands 11

2. Using the SHELL ... 12
2.1 Simple commands 13
2.2 Pre-opened 1/0 channels .. 14
2.3 Expansion of filename templates ... 16
2.4 Quoting ... 18
2.5 Prompts ... 21
2.6 Command line arguments ... 23
2. 7 Devices ... 25
2.8 Exec files .. 28
2.9 Environment variables ... 34
2.10 Searching for commands .. 37
2.11 Starting the SHELL ... 38
2.12 Error Codes ... 42

- sh.2-

Aztec C65 SHELL

The SHELL

The SHELL is a program, which runs under ProDOS, that provides
an efficient and convenient environment in which to develop
programs.

The basic function of the SHELL is to execute commands. You
enter commands by typing on the keyboard When it finishes
executing a command, the SHELL writes a prompt to the screen and
waits for another command to be entered

There are three types of commands: builtins, programs, and exec
files. The operator doesn't have to specify the type of an entered
command, just its name. When a command is entered, the SHELL first
searches for a builtin command, and then for a program or exec file.

Builtins are commands whose code is built into the SHELL. To
execute a builtin command, the SHELL simply transfers control of the
processor to the command's code. When done, the command's code
returns control of the processor to the main body of the SHELL.

Programs are commands whose code resides in a disk file. The
name of a command is the name of the file containing its code. The
SHELL executes a program by loading its code into memory,
overlaying the SHELL, and then transfering control of the processor to
the loaded code. When the program is done, the SHELL is
automatically reloaded into memory and regains control of the
processor.

Exec files are disk files containing text for a sequence of
commands. The SHELL executes an exec file by executing each of the
file's commands.

This chapter first discusses the file system supported by the SHELL
and then describes the features of the SHELL. The utilities chapter
describes the SHELL's builtin commands and the program commands
that are provided with the Aztec C package.

- sh.3-

SHELL The file system Aztec C65

1. The file system

The SHELL supports the ProDOS file system. In this section we
want to describe this file system, in case you aren't familiar with it,
and then briefly describe the SHELL's file-related commands.

Programs can access information contained on one or more disks,
or 'volumes', as they're called in ProD OS. The information is
contained in logical entities called 'files', each of which has a name. A
single file is contained within one volume; that is, a file can't span
several volumes.

Along with files, a file system contains directories. A directory
contains a number ofentries, each of which identifies a file or another
directory. Files having entries in a particular directory are said to be
contained in the directory, and the directories having entries in a
directory are said to be subdirectories of that directory. A file is
contained in exactly one directory, and a directory other than a special
directory called the "root directory" is a subdirectory of exactly one
directory. The root directory isn't a subdirectory of any directory.

Each volume has a special directory called the "volume directory".
All directories on a volume can be reached by passing through a
sequence of directories that begins with the volume's volume
directory.

The volume directories of the volumes that are in disk drives, or
that are otherwise known to ProDOS (for example, the ram disk), are
subdirectories of the file system's root directory.

All directories, except for the root directory, have a name. The
name of a file or directory must be unique within the directory that
contains it, but two files or directories that are in different directories
can have the same name.

An example

For example, figure 1 depicts the organization of a file system.
This file system contains two volumes: one volume (whose volume
directory is named work) is a disk in a disk drive, and the other (whose
volume directory is named ram) is the ram disk.

The root directory for the file system contains, as subdirectories,
the work and ram directories.

The work volume contains the files hello.c and hello.o, and the
directory subs.

The ram volume contains the files stdio.h and ctype.h, and the
directory subs. Notice that there are two directories named subs. We'll
describe below the naming convention for directories, which will make
clear how a directory is uniquely identified

- sh.4-

Aztec C65 The file system SHELL

The subs directory that is a subdirectory of the ram directory
contains just the file in.c.

The subs directory which is a subdirectory of the work directory
contains two files: in.c and out.c. The in.c file in this directory is
different from the in.c which is in the other subs directory.

- sh.5-

SHELL

I ram
I

I I I

The file system

I I I
,------- I ctype.h

stdio.h

subs

in.c

Aztec C65

I The root directory

work

I I I
II L

hello.c I I
hello.o I

subs

in.c outc

Figure 1: a sample file system

- sh.6-

Aztec C65 The file system

1.1 File names

There are two parts to a name that identifies a file:

* The path to the directory containing it;
* The file name itself.

SHELL

For example, the file in.c in figure I, which is in the subs directory,
which is a subdirectory of the work directory, which is a subdirectory
of the root directory, is identified by the name:

I work/ subs/ in.c

where /work/ subs/ is the path identifier and in.c is the file name.

The following paragraphs describe the naming convention in detail.

File and Directory Names

A file or directory name can contain up to 15 alphabetic characters,
digits, and periods. The case (upper or lower) of an alphabetic
character is not significant

By convention, the Manx programs assume that a file name
contains a main part, usually called the "filename", optionally followed
by a period and an extension. With this convention, related files can
have the same basic filename, and different extensions. Extensions
used by the Manx software are:

extension

.c

.asm

.0

.1

.rsm

.sym

.1st

file contents

C source
assembler source
relocatable 6502 object code
relocatable pseudo-code object code
symbol table for overlay use
symbol table for an executable file
assembler listing

By default, the file created by the linker which contains executable
code has no extension.

For example, the C source code for the "hello, world" program
might be put in a file named hello.c. The file containing the relocatable
object code for this program would by default be named hello.o, and
the file containing the executable code for the program would be
named hello.

Path identifiers

The path component of a file name specifies the directories that
must be passed through to get to the directory containing the file. It is
a list of the directory names, with each pair separated by a forward
slash character, /. The root directory doesn't have a name, and is
represented by single slash, '/'.

- sh.7-

SHELL The file system Aztec C65

For example, the paths to the directories used in figure 1 are:

I Path to the root directory.

I ram Path to the ram subdirectory of the root
directory. This subdirectory is also the volume
directory of the ram disk

/ram/subs Path to the subs directory that is a subdirectory
of the ram directory;

/work path to the work directory, which is a
subdirectory of the root directory. This
subdirectory is also the volume directory of the
floppy disk that's in a disk drive.

/work/subs Path to the subs directory that is a subdirectory
of the work directory.

Each directory can be reached from the root directory by passing
through a unique path of directories. This is why two directories
which are subdirectories of two different directories can have the same
name and still be uniquely identified: the path to each one is different.

Examples

The complete names of some of the files in figure 1 are:

jramjstdio.h
/ramjsubs/in.c
jwork/hello.c
jwork/subs/in.c

Frequently, the complete file name needn't be given to identify a
file. The file can be located relative to a directory called the 'current
directory', thus allowing the path to be omitted from the file name.
This is discussed below.

1.2 The current directory

Having to specify the complete name of each file you want to
access would be very cumbersome. Also, when developing programs, at
any time, you are generally interested in the files on a single directory.
For these reasons, the SHELL allows one directory, called the 'current
directory', to be singled out.

When the SHELL is first started, the root directory on the volume
containing the SHELL is the current directory; there is also a
command, cd, which allows the operator to make another directory the
current directory.

A file on or near the current directory can be specified by the
operator or program without having to list the complete name of the
file:

- sh.8-

Aztec C65 The file system SHELL

* If the name doesn't specify the path, the file is assumed to be
in the current directory.

* If the name doesn't specify a path which begins at the root,
the path is assumed to begin with the current directory.

For example, suppose that the current directory on the volume
depicted in figure I is work. The complete name of the file hello.c in
this directory is

I work/hello.c

Since this file is in the current directory, the operator or a program
can refer to it without the path; that is, simply as

hello.c

Since the directory ;work/ subs is a subdirectory of the current
directory, the file out.c within /work/subs can be identified with only
a partial path name; that is, as

subs/out.c

1.21 The '.' directory

The current directory can be referred to using the character '.'. For
example, the following command will copy the file hello.c that is in the
I source directory to the file new.c in the current directory:

cp /sourcejhello.c ./new.c

Since a file is assumed to be in the current directory unless you
specify otherwise, the above command is equivalent to the following

cp jsourcejhello.c new.c

1.22 The' •• ' directory

The parent directory of the current directory can be specified using
two periods as the path name. For example, in figure I, with the
jworkjsubs directory as the current directory, the file hello.c could be
referred to as

.. /hello.c

and the file ctype.h in the directory ram could be identified as:

.. / .. /ramjctype.h

1.3 Directory-related builtin commands

The SHELL has several builtin commands for exammmg and
manipulating directories: pwd, cd, Is, and df. We want to introduce
these commands in this section; complete descriptions are presented in
another section of the manual.

- sh.9-

SHELL The file system Aztec C65

pwd

This command, whose name is a mnemonic for 'print working
directory', displays the names of the directories that must be passed
through to get to the current directory. The names are separated by a
slash,'/'.

cd

This command makes another directory the current directory. If
the new directory doesn't exist, the current directory remains
unchanged

The command has one argument, which specifies the directories
that must be passed through to get to the desired directory. This
argument has the same format as the path component of a file name.

For example, considering figure 1, with jwork being the current
directory, the following cd commands change the current directory as
indicated:

Is

command

cd /ram
cd subs
cd ..

new current directory

/ram
/work/subs
I (the root directory)

Is displays the names of files and the contents of the directories
whose names are passed to it

The format is:

Is [-1] [name] [name] ...

where square brackets indicate that the enclosed field is optional.

-1 causes Is to display information about the files or directories in
addition to their names.

The name arguments are the names of the files and directories of
interest. If no 'name' arguments are specified, the command displays
information about the current directory.

For example, the following displays the names of the files and
directories in the current directory:

Is

The following displays information about the files and directories
in the current directory:

Is -1

The following displays the names of the files and directories
contained in the /ram directory:

- sh.lO-

Aztec C65 The file system SHELL

Is /ram

The following displays information about the file in.c in the
directory I john/ progs:

Is -1 john/progs/in.c

For more information about the Is command, particularly about the
information displayed when the '-1' option is used, see the description
of Is in the utilities chapter.

1.4 Miscellaneous file-related commands

In this section we want to list the rest of the file-related commands
that are built into the SHELL. For complete descriptions, see the
utilities chapter.

rm
cp
mv

cat
df
lock/unlock

Remove files
Copy files
Move files This will either rename the
files or copy them and erase the originals,
depending on whether the old and new files
are on the same volume.
Display text files.
Display file information
Lock/unlock files.

- sh.ll-

SHELL Using the SHELL Aztec C65

2 Using the SHELL

The previous section presented information on the SHELL's file
system, which you need to know before you can use the SHELL With
that information in hand, you can continue on with this section, which
shows you how to use the SHELL.

- sh.12-

Aztec C65 Simple commands SHELL

2.1 Simple Commands

Simple commands consist of one or more words separated by
blanks. The first word is the name of the command to be executed; the
other words are arguments to be passed to the command The name of
the command is always passed to a command as an argument. For
example,

Is

lists the names of the files and directories that are in the current
directory. The first word on the command line, Is, is the name of the
command No other words are specified, so the only argument passed
to the 'Is' command is the name of the command

The Is command can also be passed arguments; the command

Is /bin

displays the names of the files and directories in the directory named
I bin. The first word on this command line, Is is the name of the
command to be executed Two words are passed to the Is command as
arguments: Is and /bin/.

The command

rm hello.bak temp /include/heado

removes the files hello.bak, temp, and /include/head.o. The name of
this command is rm Four words are passed to it as arguments: rm,
hello.bak, temp, and include/head.o.

The command

Is -1 /include

displays the names of the files and directories in the directory
/include. The '-1' causes the Is command to display other information
about the files and directories in addition to their names. For this
command, . three words are passed to the Is command: Is, -I, and
/include.

The meaning of the arguments following the command name on a
command line is particular to each command Usually, either they are
'switches', indicating a particular command option, as in the Is -I
/include command above, or they are file names. By convention,
switches usually precede file names in a command line, although there
are exceptions to this.

- sh.13-

SHELL Pre-opened 1/0 channels Aztec C65

22 Pre-opened 1/0 channels

When a builtin command or command program is started by the
SHELL, three 1/0 channels are automatically pre-opened for it by the
SHELL: standard input, standard output, and standard error. By
default, these channels are connected to the console, and most
programs use these devices when communicating with the operator.
For example, the Is command displays information about files and
devices on the standard output channel and writes error messages to
the standard error channel

221 Standard output

The operator can request that the standard output channel be pre­
opened to another file or device other than the console by including a
phrase of the form '> name' on the command line . For example, the
following command causes Is to write information about the files and
directories in the current directory to the file files.out, instead of the
console:

Is > files.out

If the specified file doesn't exist, it is created; otherwise, it is
truncated to zero length.

The standard output channel can also be redirected so that output to
a file via the standard output is appended to the file. This is done by
including a phrase of the form '>> file' on the command line. For
example, the following command causes Is to append information
about the files and directories in the current directory to files.out.

Is >> files.out

If the specified file doesn't exist, it is created; otherwise it is
opened and positioned at its end

222 Standard input

The operator can request that the standard input device be pre­
opened to a file or device other than the console by including a phrase
of the form '< name' on the command line. For example, if the
program prog reads from the standard input channel, then the
command

prog

causes prog to read from the console, and the command

prog <names.in

causes it to read from the file names.in.

223 Standard error

A program's standard error channel can also be redirected to
another file or device other than the console, by including a phrase of

- sh.14-

Aztec C65 Pre-opened 1/0 channels SHELL

the form:

2> name

where name is the name of the device or file to which standard
output is to be connected

For example, the following causes Is to display the names of all files
in the directory ;work having extension .c. The names are sent to the
file ls.out in the current directory and any error messages are sent to
the file err.msg:

Is jwork/*.c >ls.out 2>.bout

2.24 Other 1/0 channels

Channels other than standard input, standard output, and standard
error can be pre-opened for a program. The channel having file
descriptor i is pre-opened for output to a device or file named name by
including the phrase

i> name

on the command line. And it's pre-opened for input by including

i< name

on the command line.

For example, the following command pre-opens the channel having
file descriptor 3 for output to the file info.out.

prog 3>info.out

2.25 Creating empty files

The SHELL allows you to enter a command line containing only
1/0 redirection components. In this case, the SHELL processes the
1/0 redirection clauses and then reads another command line.

Such a command line can be used for recording the time at which
events occur. For example, the command

> mytime

creates an empty file named mytime. The last-modified field for this file
is set to the time at which it was created

- sh.lS-

SHELL File name expansion Aztec C65

2.3 Expansion of file name templates

When the characters '?' and/ or '*' appear in a command line
argument, the SHELL interprets the argument as a template to be
matched to file names. Each matching name is passed to the program
as a separate argument, and the template isn't passed If the template
doesn't match any file names, it is passed to the program, unaltered

These characters can only be used within the filename component
of a file name, and not the volume or path components.

2.3.1 The'?' character

The character '?' in a template matches any single character. For
example, the command

rm ab?d

would remove files in the current directory whose names are four
characters long, the first two being 'ab' and the last being 'd'. Thus, it
would remove files with names such as

abed abxd ab.d

from the current directory.

Continuing with this example, if the three files listed above were
the only ones in the current directory that matched the template
"ab?d", then pointers to those three names are passed to the rm
command in place of a pointer to the template. So the rm command
would behave as if the operator had entered

rm abed abxd ab.d

If no files matched the template, a pointer to the template itself
would have been passed to rm.

Notice that the template "ab?d" matches "ab.d". This emphasises the
fact that extensions in file names, and their preceding period, are
simply conventions and are not afforded special treatment by the
SHELL, as they are in some other systems.

2.3.2 The '*' character

The character '*' matches any number of characters, even none. For
example,

rm jwork/ab*d

removes all files in the jwork directory whose names begin with the
characters 'ab' and end with 'd'. Thus, it would match files in the
;work/ directory having names such as

abd abed abl23d ab.exd

As with templates containing '?', the names of files which match a
template containing '*' are passed to the program, each as a separate

- sh.16-

Aztec C65 File name expansion SHELL

argument, and the template isn't passed The template is passed only if
no files match it. Thus, if the files listed above were the only ones that
matched the template, then the following would have been equivalent
to 'rm jwork/ab*d':

rm jwork/abd /work/abed jwork/abl23d jwork/ab.exd

The use of '*' templates can be dangerous. For example, if you
wanted to type

rm abc*

but mistyped it as

rm abc*

then rm will remove "abc", if it exists, and then remove all other files
in the current directory.

- sh.17 -

SHELL Quoting strings Aztec C65

2.4 Quoting

Characters such as *, <, and > are special, because they cause the
SHELL to perform some action and are not normally passed to a
program. There are occasions when you want such characters to be
passed to a program without having the SHELL interpret them. This
can be done by preceding the character with a backslash character, '\'.
Any character can be preceded by a backslash; when the SHELL
encounters '\' in a command line it removes the backs lash from the
line and treats the following character as a normal character, without
attempting to interpret it

For example, the command

echo*

displays the names of all files and directories in the current directory
on the console. The command

echo*

displays the character '*' on the console.

The backslash character and multi-line commands

The backslash character can also be used to enter long command
lines on several physical lines. Normally, a newline character causes
the SHELL to terminate the reading of a command line and to begin
execution of the command When the newline character is preceded by
a backslash, the SHELL removes both characters from the command
line and continues reading characters for the command line. For
example,

echo abc\
def

displays 'abcder on the console.

When the SHELL needs additional input from the console before it
can execute a command, it will prompt you with its secondary prompt.
By default, this is the character '>'. The primary prompt, which is
displayed when the SHELL is ready for a new command, is by default
'-?'. Prompting is discussed in more detail below.

Quoted strings

A string in the command can be surrounded by single quotes. In
this case, the SHELL considers the entire string within the quotes to
be a single argument. The SHELL doesn't try to interpret any special
characters contained in a string that is surrounded by single quotes.

For example, consider a program, args, which prints the arguments
passed to it, each on a separate line. The command

- sh.18 -

Aztec C65

args 123 234 345

would print

args
123
234
345

Quoting strings SHELL

(the command name is passed to the program as an argument), while
the command

args '123 234 345'

would print

args
123 234 345

The command

args *

would print the names of each of the files on the current directory,
each on a separate line, while

args '*'

would print the character'*'.

A quoted string can contain newline characters. That is, if the
SHELL sees a quote character and then reads a newline character
before finding another quote, it will keep prompting for additional
input until it finds another quote. The argument corresponding to the
quoted string then consists of the string with the newline characters
still imbedded in it.

For example, if you enter

echo 'ab

the SHELL will prompt you for additional input, using its
secondary prompt. If you then enter

I
2
3'

the echo command will be activated with arguments

echo
ab\nl \n2\n3

(where '\n' stands for the newline character) and will print

- sh.19-

SHELL

ab
1
2
3

Double-quoted strings

Q~oting strings Aztec C65

A string on the command line can also be surrounded by double
quotes. The only difference in the treatment of singly- and doubly­
quoted strings by the SHELL is that variable substitution is done for
double-quoted strings but not for single-quoted strings. This is
discussed in detail in the section on environment variables.

- sh.20-

Aztec C65 Prompts SHELL

2.5 Prompts

The SHELL prompts you when it wants you to enter information,
by writing a character string, called a 'prompt' to the console. There
are two types of prompts: one when the SHELL is waiting for a new
command to be entered, and the other when it needs additional input
before it can process a partially-entered command

2.5.1 The primary prompt

The first type of prompt is called the 'primary' prompt. By default,
it is the string '-?'. This can be changed by entering the command of
the form

set PSl=prompt

where 'prompt' is the desired prompt string. For example,

set PSI='>>'

sets the primary prompt to '>>'. Note the single quotes surrounding
>>. These are necessary to prevent the SHELL from trying to interpret
these special characters.

set PSl='hi there, fred please enter a command: '

sets the primary prompt to the specified, space-containing string.

2.5.2 The secondary prompt

The second type of prompt is called the 'secondary' prompt. By
default, it is the string'>'. This can be changed by entering a command
of the form

set PS2=prompt

2.5.3 The oommand logging prefix

When command logging is enabled, the SHELL logs each command
to the console, and precedes it with a character string called the
'command logging prefix'. By default, this prefix is the character '+',
and can be set by entering a command of the form

set PS3=prefix

2.5.4 Special substitutions

The prompts and prefix .described above can contain codes that
cause variable information to be included in a prompt. The codes
consist of a lower case letter preceded by the character '%'. For
example, to set the primary prompt to the time, followed by' :' enter

set PS1='%t :'

The list of letters and their substituted values are:

- sh.21 -

SHELL

letter
d
t
v
c

Prompts

substituted value
Date
Time
Current volume
Current directory

- sh.22-

Aztec C65

Aztec C65 Programs & arguments SHELL

2.6 The program's view of command line arguments

In this section we want to describe the passing of arguments by the
SHELL to the three types of programs that the Aztec linker can create:
programs of type PRG (that can be started by the SHELL but not by
the Basic Interpreter); programs of type BIN (that can be started by the
SHELL and by the Basic Interpreter); and system programs (that are
loaded at Ox2000).

For more information on the different types of Aztec-generated
programs, see the Command Programs section of the Technical
Information chapter.

2.6.1 Passing Arguments to PRG Programs

The main function of a program is the first user-written function to
be executed when the program is started The SHELL passes two
arguments to the main function of a program of type PRG, as follows:

main(argc, argv)
int argc; char *argv[];

argc contains the number of command line arguments passed to the
program. The command itself is included in the count.

argv is an array of character pointers, each of which points to a
command line argument

For example, if the operator enters the command

prog abc def ghi

then the argc parameter to main will be set to 4, and the argv array is
set as follows:

argv element
0
1
2
3

points to
"prog"
"abc"
"def'
"ghi"

As another example, for the command

prog "abc def ghi"

argc is set to 2, and the argv array as follows:

argv element
0
1

With the command

prog *.c

points to
"prog"
"abc def ghi"

and the current directory containing the files

- sh.23-

SHELL Programs & arguments

ac ao a b.c

argc will be set to 5, and the argv array as follows:

argv element
0
1
2
3
4

points to
"prog"
"ac''
"ao"
"a"
"b.c"

2.6.2 Passing Arguments to BIN and system programs

Aztec C65

A program that can be activated by the Basic Interpreter (that is, a
program of type BIN or a system program) can also be activated by the
SHELL. When the SHELL starts such a program, the first parameter
of the program's main function (argc) is set to 0, and its second
parameter (argv) is set to a null pointer.

- sh.24-

Aztec C65 Devices

2.7 Devices

Programs can access the following devices:

* The console, named con:
* A printer, named pr:
* A serial device, named ser:

SHELL

For example, the following command copies the output of the Is
command to the printer:

Is> pr:

In addition, programs can access the card in a particular slot using
the name sx:, where x is the slot's number. For example, the
following command copies the output of Is to the card in slot 2:

Is >s2:

2.7.1 Device Configuration

Using the config program, you can define to the SHELL the devices
that are connected to your Apple. Knowledge of this configuration is
then available both to the SHELL and to PRG programs that you tell
the SHELL to start. You can also use config to define a configuration
to stand-alone programs that you create using the Aztec software; that
is, to ProDOS BIN and SYS programs, and to programs that run on
DOS 3.3.

For details on config see its description in the Utility Programs
chapter.

The console is one device for which you can define attributes using
config. If the SHELL or a stand-alone program starts without your
having predefined the console attributes to it using config, the SHELL
or stand-alone program will determine the type of Apple on which it's
running and set the console attributes accordingly.

Similarly, if the SHELL or a stand-alone program starts without
your having predefined the printer attributes to it using config, the
program will assume that the printer has the following attributes:

* Its card is in slot I,
* It is initialized using the string "I"Y'Y255N.
* Characters sent to it must have their most significant bit set;
* A carriage return character must be followed by a line feed

character.

2.7.2 Console 110 on an Apple I I Plus

A standard Apple I I Plus does not support the full ASCII character
set on keyboard input or screen output. There are hardware
modifications that you can make to an Apple I I Plus that provide
some help, and our software assumes that you have made these
modifications. One of these changes is the "single wire shift key mod",

- sh.25-

SHELL Devices Aztec C65

and the other is a modification that allows the console to display the
full set of displayable ASOI characters. For information on these
modifications. see your Apple dealer.

Even with these changes, you still can't enter the special C
characters on an Apple I I Plus, so our software translates certain
control characters that you type into those characters. The following
table lists these control characters and the characters to which they are
translated In this table, as in the rest of this manual, A X is an
abbreviation for "type X while holding the control key down". The
first column identifies control codes that you type; the second
identifies the characters to which control codes are translated when the
SHIFT key is held down; and the last column identifies the characters
to which control codes are translated when the SHIFf key is held
down.

Press: To get (lower): To get (upper):

AP @
"'A { [
A£ I \
AR }]
AN A

"'C DEL

To enter a TAB character on an Apple I I Plus, type the right arrow
key that is on the far right of the Apple keyboard

2 7.3 Other special motrol ke}S

Regardless of the type of console you are using, several control
characters that you type have special meaning:

"'C Causes the program to halt and return control to the
command processor program (ie, to the SHEIL or the
Basic Interpreter); A check for AC is made both when
a program is reading from the keyboard and when it is
writing to the screen.

AS Causes screen output to be suspended until you type
another AS.

AD Causes EOF to be sent to a program that is reading the
keyboard

A H Moves the cursor one character to the left on the
screen. When the SHELL has requested input, it also
erases that character from the screen and from the
SHELL's input buffer. The SHEIL reads characters
into this buffer when its waiting for a CQmmand and
then executes the command when you type the
RETIJRN key.

DEL Same as AH
A X Causes the SHELL to clear its input buffer and move

- sh.26-

Aztec C65 Devices SHELL

the cursor to the next line on the screen. Thus, "X
essentially deletes the command line that you are
currently typing.

RETURN When you type RETURN, the keyboard input routine
translates it to a Newline character.

- sh.27-

SHELL Exec Files Aztec C65

2.8 Exec files

An "exec file" is a file containing a sequence of commands. The
operator causes the SHELL to execute the commands in an exec file
by simply typing its name.

For example, if the file named dir in the current directory contains
the commands

pwd
Is -1

then when the operator types

dir

the SHELL will execute the commands pwd and Is -1.

An exec file can contain any command that can be entered from
the console. In particular, an exec file can execute another exec file;
that is, exec files can be chained However, when one exec file calls
another, control never returns to the calling exec file; that is, exec files
cannot be nested

2.8.1 Exec file arguments

The command line that activates an exec file looks just like a
command line that activates a builtin or program command Exec files
can be passed arguments in the same way that builtin and program
commands are passed arguments:

* a space-delimited string is normally passed to the exec file as a
single argument;

* A quoted string is passed as a single argument;
* Filename-matching templates, containing '?' and '*', are

replaced, when a match is made, by the matching file names;
* '\' causes the next character to be passed to the exec file

without interpretation, and the'\' isn't passed '\ \' is replaced
by a single backslash character.

The method by which an exec file accesses command line
arguments is necessarily different from that used by builtin and
program commands, since the exec file is not a program. The exec file
can be passed any number of arguments, and it refers to them as $1,
$2, ... , where $1 represents the first argument, $2 the second, and so
on. $0 refers to the name of the exec file.

Before executing a command in an exec file, the SHELL replaces
the $x variables with the corresponding command line arguments. $x
variables which don't have a corresponding argument are replaced by
the null string.

For example, the following exec file displays the value of the first,
fourth, and ninth arguments, and the name of the command itself,

- sh.28-

Aztec C65 Exec Files

each on a separate line:

echo the first argument is $1
echo the fourth argument is $4
echo the ninth argument is $9
echo and me, I'm $0

If the exec file is named names then

names a b c d e f g h i j

would print

the first argument is a
the fourth argument is d
the ninth argument is i
and me, I'm names

and the command

names*

SHELL

would display the names of the first, fourth, and ninth files in the
current directory, and the name of the command

The command

names "this is one argument"

would print

the first argument is this is one argument

The $# variable

Several other variables are set when an exec file is activated $# is
set to the number of arguments that were passed to the exec file. For
example, an exec file named hello might contain

echo My name is $0
echo I was run with $# arguments

Typing

hello one two three

would print

My name is hello
I was run with 3 arguments

The $* and $@ variables

$* and $@ are two other variables that are set when an exec file is
activated Both of these are set to a character string consisting of all the
exec file's arguments, less $0. For example, consider an exec file
allargs, which contains

- sh.29-

SHELL Exec Files Aztec C65

args $*

where args is a command program that prints its arguments, each on a
separate line. Typing

allargs one two three

would give

args
one
two
three

Exec file variables and quoted strings

When an exec flle variable is contained within a character string
surrounded by single quotes, the SHELL does not replace the variables
with their values. Thus, given the exec file info, which contains

echo 'number of args = $0'
echo 'args = $0 $1 $2'
echo 'all args =$*and$@'

then typing

gives

info one two three

number of args = $0
args = $0 $1 $2
all args = $* and $@

As mentioned in section 2, the SHELL does substitute variables
that are contained within character strings that are surrounded by
double quotes. Thus, the exec file

args "$*"

will pass the exec file arguments to echo as a single argument and is
equivalent to

args "$1 $2 $3 ... "

$* and $@ are the same, except when surrounded by double quotes.

The exec file

args "$@"

is equivalent to

args "$1" "$2" ...

2.8.2 Exec file options

There are three options related to exec files: logging of exec file
commands to the screen, continuation of an exec file following

- sh.30-

Aztec C65 Exec Files SHELL

execution of a command which terminates with a non-zero exit code,
and execution of commands.

Each option has an identifying character. An option's value is set
by issuing a set command, giving the option's character preceded by a
minus or plus sign. Minus enables an option and plus disables it.

The options, their identifying characters, and their default values
are listed below:

character
X

e
n

option
log commands
abort on non-zero
don't execute cmds

default
disabled
enabled
disabled

Several options can be enabled or disabled in a single set command,
and an exec file can contain several option-setting commands.

The same set command is used to set exec file options and to set
environment variable values. set commands which set environment
variables can also be contained in an exec file. However, a single set
command cannot set both environment variables and exec file options.

When the SHELL logs exec file commands to the console, it
precedes each command line with the character'+'. This prefix can be
changed by entering a command of the form

set PS3='string'

where 'string' is the desired prefix.

The following are valid set commands for manipulating exec file
options:

set -x
set +x
set -x -n
set -x +e

enable logging
disable logging
enable logging and non-execution of cmds
enable logging, disable return code chk

Exec file options are inherited by a called exec file. That is, if you
type

set -x
docmds

where docmds is an exec file, the 'x' option is enabled in docmds.

An exec file can change the setting of the exec file options, but
these changes don't affect the settings of the options in the caller.
Thus, if docmds includes the command

set +x

then the 'x' option will be disabled during the execution of docmds,
but when control returns to the operator, the 'x' option is reenabled.

- sh.31 -

SHELL Exec Files Aztec C65

28.3 Comments

In an exec file, any line beginning with the character '#' is
considered to be a comment, and is not executed Argument
substitution is performed on it, though, allowing exec files like:

set -x
the first arg is $1
the second is $2

28.4 Loops

Exec files can contain 'loops'; that is, sequences of commands that
are executed repeatedly, each time with an environment variable
assigned a different value.

A loop has the format

loop
cmdlist
eloop

where cmdlist is the sequence of commands. The SHELL will
repeatedly execute the cmdlist commands; after each pass through the
commands it will shift down the exec file's arguments, so that
argument 2 becomes argument 1, argument 3 becomes argument 2, and
so on. When the argument list becomes empty, the SHELL will exit
the loop and execute the command that follows the eloop.

For example, the following exec file compiles the C source files
whose names are passed to it (without the ".c" extension):

loop
echo compiling $1
cc $1
eloop
echo "*** all done***"

28.5 The shift command

The command

shift

causes the exec file variable $1 to be assigned the value of $2, $2 to be
assigned the value of $3, and so on. The original value assigned to $1 is
lost. When all arguments to the exec file have been shifted out, $1 is
assigned the null string.

For example, the following exec file, del, is passed a directory as its
first argument and the names of files within the directory that are to
be removed:

- sh.32-

Azt~c C65

set j = $1
shift
loop
rm $j/$1
eloop

Exec Files SHELL

In this example, 'j' is an environment variable. Environment
variables are described in the section on environment variables, so you
may want to reread this section after reading that section.

The first two statements in the exec file save the name of the
directory and then shift the directory name out of the exec file
variables.

The loop then repeatedly calls rm to remove one of the specified
files from the directory.

Entering

del I work file 1. bak file2. bak

will remove the files filel.bak and file2.bak from the jwork directory.

- sh.33-

SHELL Environment variables Aztec C65

29 Environment variables

An environment variable is a variable having a name and having a
character string as its value. Environment variables have two functions:

* They can be used to pass information to a program;
* They can be used to represent character strings within

command lines.

Information can also be passed to programs as command line
arguments, as described in a previous section.

29.1 Defining environment variables

Environment variables can be created by the operator, using the set
command, and retain their value until changed by another set
command In particular, environment variables retain their existence
and values even when programs are executed

Environment variables are case-sensitive, so the variable named
V AR is different from one named Var.

The format of the set command which sets the value of an
environment variable is:

set V AR=string

where V AR is the name of the variable, and string is the character
string to be assigned to it string can be null, in which case the
specified variable is deleted The variable will be created, if it didn't
previously exist

For example, to set the environment named PATH to the string
":/cc/bin:/progs" the following command would be used:

set PATH=:/cc/bin:/progs

To delete the PATH variable, the following command would be
used:

set PATH=

Environment variables can be assigned quoted strings:

set NAMES='Penelope Matilda Esmarelda'

The set command, when issued without any arguments, will display
the names and values of the environment variables.

The set command can also be used within exec files to set exec file
options. This use of the set comr.1and is discussed in the exec file
section of this chapter.

29.2 Passing environment variables to programs

A program can fetch the value of an environment variable using
the getenv function, passing to it the name of the variable. Programs

- sh.34-

Aztec C65 Environment variables

cannot change the value of an environment variable.

2.9.3 Use of environment variables in command lines

SHELL

When the SHELL finds an environment variable name in a
command line, preceded by the character '$', it replaces the name and
the '$' with the value of the variable.

For example, if the environment variable color has the value violet,
then entering

echo $color

is equivalent to entering

echo violet

and results in the displaying of

violet

on the screen.

As another example, given the environment variable b, having
value 'I fred/ bin/', the following command will move the file pgm
from the current directory to the directory /fred/bin:

mv pgm $b

The use of environment variables isn't restricted to command line
arguments. For example, given the environment variable cmd, having
value 'Is -1 jusrjmath/lib/', the following command will list the
contents of the directory jusr /math/lib:

$cmd

Environment variables names that are used in command lines can
be surrounded by { and } to prevent ambiguity in cases where the
variable is immediately followed by a character string. For example, if
the following environment variables are defined

then

user= fred
userdy=john

echo ${user}

is equivalent to

echo $user

and displays

fred

Entering

- sh.35-

SHELL

echo $userdy

will display

john

Environment variables Aztec C65

since the SHELL interprets the entire string following $ to be the
name of the variable. And entering

${user}dy

will display

freddy

since the SHELL assumes that the environment variable name is
contained in the braces.

29.4 Standard environment variables

A few environment variables are created and assigned initial values
by the SHELL when it is first activated These are described in the
section on starting the SHELL.

- sh.36-

Aztec C65 Command searches SHELL

2.10 Searching for commands

When the operator enters a command, the SHELL first checks to
see whether it is a builtin command If so, the SHELL executes it.
Otherwise, the command must be the name of a file to be executed, so
the SHELL attempts to find the file.

2.10.1 Searching for command files

The SHELL will look for a command file in the directories that are
specified in the PATH environment variable. PATH consists of the
directories to be searched, separated by colons. Thus, the following
command will cause the SHELL to search for commands first in
directory dirl, then in directory dir2, ... , and finally in directory dirn,
issue the command

set PA TH=dirl:dir2: ... :dirn

If an entry doesn't specify a complete path (that is, doesn't begin
with the root directory), the path to the directory begins at the current
directory. And if the entry is null, the entry specifies the current
directory. The "current directory" is the directory that is current when
the SHELL attempts to find a command, and not when the set PATH
command is entered

For example, the following command will cause the SHELL to
search the current directory, then the directory /ram/bin, and finally
the directory progs, which is a subdirectory of the current directory.

set PATH=:/ram/bin:progs

The next command causes the SHELL to search the directory
/system/bin, then the jcmds subdirectory of the current directory,
and finally the current directory:

set PATH=/system/bin:cmds::

To display the value of all the environment variables, including
PATH, enter the set command by itself; eg,

set

By default, PATH is set so that the SHELL will search for
commands first in the current directory and then if your system has a
ram disk, in the volume directory of the ram disk.

2.10.2 Program oc exec file?

When the SHELL finds a file that matches the name that the
operator entered, it has to decide whether it contains a program or is
an exec file. It bases its decision on the file's type: if it is TXT, then its
assumed to be an exec file; if its type is PRG it's assumed to contain a
program.

- sh.37-

SHELL Starting the SHELL

211 Starting the SHELL

The SHELL can be started in several ways:

* By ProDOS, when ProDOS is itself started;
* By the Basic Interpreter, at your command;

Aztec C65

* By a loader that is activated when a SHELL-activated program
terminates;

* By the SHELL itself, at your command

The following paragraphs discuss each of these ways of starting the
SHELL.

211.1 ProDOS activation of the SHELL

When you turn on the Apple or type the appropriate reset keys, a
bootstrap loader is loaded from the first two sectors on the disk that's
in the Apple's boot drive. This loader then loads ProDOS into the
high part of memory from the first file in volume directory of the disk
in the boot drive whose name is ProDOS and whose type is SYS.
ProDOS then loads and tranfers control of the processor to a command
processor program; that is, a program to which you will enter
commands. ProDOS loads this program from the first file in the
volume directory of the disk in the boot drive whose name ends in
.system and whose type is SYS.

The distribution disk that's labeled /system is "bootable", as are
copies that you make of it: the disk contains a bootstrap loader,
ProDOS in the file named ProDOS, and the SHELL in the file named
shell.system. Thus, when you turn on the Apple or hit the appropriate
reset keys with this disk in the Apple's boot drive, ProDOS and the
SHELL are automatically loaded and started

211.2 Starting the SHELL from the Basic Interpreter

With the Basic Interpreter running, you can start the SHELL by
entering a command consisting of the name of the file that contains
the SHELL, preceded by a dash character:

-shell. system

This loads the SHELL into memory below ProDOS (which is
always in memory), overlaying the Basic Interpreter and any basic
program that was in memory.

211.3 Restarting the SHELL when a Program Stops

There are two parts to the SHELL: a transient section and a
memory~resident "environment" section. When the SHELL starts
another program, the SHELL's transient section is overlayed by the
program, but its environment section usually isn't When a SHELL­
started program terminates, the transient section of the SHELL needs
to be reloaded, but the memory-resident section need not be, unless it
has been destroyed

- sh.38-

Aztec C65 Starting the SHELL SHELL

The memory-resident "environment" section of the SHELL
contains information, such as environment variables, that the SHELL
wants to preserve during the execution of another program. It also
contains a small loader routine.

When a SHELL-activated program terminates, control is passed to
the loader routine in the SHELL's environment section. This routine
loads the SHELL's transient section into memory, thus overlaying the
program that was active, and then transfers control of the processor to
the SHELL.

The file from which the SHELL is loaded is named shell.system, the
path to the directory containing this file is defined in a field within,
the SHELL's environment section. We'll describe how this field is set
below.

2.11.3.1 Destruction of the SHELL's environment section

The SHELL's environment section is located in the area of memory
just below OxBFOO. Programs of type PRG or BIN that you create
using the Aztec C65 linker and libraries will not modify the SHELL's
environment section.

When the SHELL starts a program, it sets the Applesoft and Integer
Basic IDMEM fields to the base of the SHELL's environment section.
Thus, even if a program started by the SHELL hasn't been created
using Aztec software, the program won't destroy the SHELL's
environment section, if the program respects the HIMEM fields by not
modifying memory above this address. For example, the filer is an
example of a program that wan't created using Aztec software, that can
be started by the SHELL, and that won't destroy the SHELL's
environment section.

System programs, which are programs whose starting address is
Ox2000, are assumed to use all memory below OxBFOO, which is the
first location that ProDOS uses. Accordingly, when a system program
is activated, including one created using the Aztec software, it usually
destroys the SHELL's environment section.

When the SHELL is restarted, it can tell if the area of memory in
which it stores its environment section contains in fact a valid
environment section. The SHELL will initialize this section of
memory only if the area doesn't contain a valid environment section.

2.11.4 Starting the SHELL from the SHELL

The SHELL is a program, and so you can start the SHELL just as
you would any other program while the SHELL is active; that is, by
entering the name of the file that contains it

The SHELL is a system program; however, when it starts itself the
environment section of the original SHELL is not destroyed

- sh.39-

SHELL Starting the SHELL Aztec C65

211.5 The SHELL's Startup Procedure

When the SHELL starts, it first checks to see whether its
environment section is in memory, by testing the area of memory
where it should be for known values. If the environment section is
not in memory, the SHELL creates a new one.

The SHELL next sets the field in the directory that defines the path
to the directory from which the SHELL will be reloaded to the path to
the directory from which the SHELL was just loaded

If the SHELL created a new environment section, it next initializes
some environment variables, defines the device configuration if one
was not predefined, executes the commands in the profile, and goes
into a loop, reading and processing commands.

For information on device configuration, see the Devices section of
this chapter and the description of the config program in the Utility
Programs chapter.

211.6 Defining the SHELL's Startup Directory

When you develop programs using Aztec C65, you will usually swap
disks in and out of disk drives as you execute the different Aztec
programs. For example, you may have one disk for initially starting
the SHELL, that contains the bootstrap loaded, ProDOS, the SHELL,
and perhaps the filer, another disk that contains the native code
compiler and assembler, another that contains the interpretive
compiler and assembler, another that contains the linker and libraries,
and another containing your own files.

From the above discussion, you know that when a SHELL-activated
program terminates, the SHELL will be reloaded from the file from
which it was last loaded, and that the disk containing this file must be
in a drive when the SHELL-activated program terminates.

Thus, it's best to have the file from which the SHELL will be
reloaded following program termination on a disk that is usually in a
disk drive. The Aztec disks don't meet this criteria, since you are
frequently swapping them in and out of drives; a better place is a disk
that contains your own files; and the best place is the ram disk, if your
system has one.

You usually won't want the disk from which the SHELL is reloaded
following program termination to contain ProDOS, since it will take
up space that could be used by your own files. Hence, the disk from
which the SHELL is initially loaded when the Apple is turned on is
different from the disk from which the SHELL is reloaded following
program termination.

But following program termination, the SHELL is reloaded from
the file from which it was previously loaded So once the SHELL is
initially loaded following powering on of the Apple, you must have the

- sh.40-

Aztec C65 Starting the SHELL SHELL

SHELL start itself, in order to redefine to the SHELL the identity of
the file from which the SHELL will be reloaded following program
termination. For example, you could put a boot disk in the boot drive
and turn on the Apple to start ProDOS and the SHELL. Then, with
your own disk, named /work in another drive, you could copy the
SHELL to this disk and define this disk as containing the file from
which the SHELL should be reloaded by entering:

cp shell.system jwork/shellsystem
I work/ shell system

2.11.7 Exewting the profile

When the SHELL is initially started (ie, following power-up on the
Apple), it will automatically search the directory from which it was
loaded for a file named profile. If such a file is found, the SHELL will
assume that it is an exec file and will execute its commands.

For example, the profile could create environment variables, copy
shell.system to the ram disk, or change the default values assigned to
the SHELL-created variables.

2.11.8 Initial environment variables

A few environment variables are created and assigned initial values
by the SHELL when it is first activated These are:

PATH

PSI
PS2
PS3
HOME

Defines the directories to be searched for a
command line. If your Apple has a ram
disk, PATH is initially set to ::/ram, which
causes the SHELL to look for a command
first in the current directory and then in
the ram disk If your Apple doesn't have a
ram disk, PATH is initially set to ::, which
cause the SHELL to look for commands
just in the current directory.
Primary prompt Initially set to'-? '.
Secondary prompt Initially set to'>'.
Cmd logging string. Initially set to '+'.
The volume directory of the disk from
which the SHELL was loaded

You can change the values of these variables just as you would any
other environment variable.

- sh.41 -

SHELL Error Codes Aztec C65

212 Error codes

When the SHELL detects an error, it says so with a message that
usually contains a numerical code that defines the error. These are
ProDOS error codes, and are defined in the following table:

hex code
00
01
04
25
27
28
2b
2e
40
42
43
44
45
46
47
48
49
4a
4b
4c
4d
4e
50
51
52
53
55
56
57
Sa

Meaning
No error
Invalid number for system call
Invalid param count for system call
Interrupt vector table full
1/0 Error
No device connected/ detected
Disk write protected
Disk switched
Invalid characters in pathname
File control block table full
Invalid reference number
Directory not found
Volume not found
File not found
Duplicate file name
Volume Full
Volume directory full
Incompatible file format
Unsupported storage type
End of file encountered
Position out of range
File Access error; eg, file locked
File is open
Directory structure damaged
Not a ProDOS disk
Invalid system call parameter
Volume control block table full
Bad buffer address
Duplicate volume
Invalid address in bit map

- sh.42-

