
TECHNICAL INFORMATION

- tech.l -

TECH INFO Aztec C65

Chapter Contents

Technical Information .. tech
Memory Organization ... 4
Command Programs .. 9
Overlays ... 15
Libraries ... 22
Interfacing to Assembly Language ... 23
Debugging Pseudo Code ... 27
Object Code Format .. 30
DOS 3.3 Programs ... 41
The tmpdev Console Driver .. 44

- tech.2-

Aztec C65 TECH INFO

Technical Information

This chapter discusses technical topics, and topics that couldn't be
conveniently discussed elsewhere.

It's divided into the following sections:

1. Menwry Organization. Discusses the factors that affect the
memory organization of a program.

2. Command Programs. Discusses the different types of
programs that you can create using Aztec C65.

3. Overlays. Describes overlays: what they are, and how they're
used

4. Libraries. Discusses the object module libraries that are
provided with Aztec C65.

5. Mixing Assembler and C Routines. Describes how to interface
assembly language routines with C routines.

6. Debugging Pseudo Code. Describes how to debug cci-compiled
functions using the monitor.

7. Object Code Format. Describes the format of object modules
and libraries.

8. DOS 3.3 Programs. Discusses the creation of programs that
run under DOS 3.3.

9. The tmpdev console driver. Describes a stripped-down console
driver that can be included in programs in place of the
standard console driver.

- tech.3-

TECH INFO Aztec C65

1. Memory Organization

For a PRG or BIN program running under ProDOS and the
SHELL, memory is organized as follows:

-------------------------------------- Ox I 0000
ProDOS & ROM I

I
--------------------------------------1 OxDOOO

1/0 ROM I
I --------------------------------------1 OxCOOO

ProDOS Global Data I
I

--------------------------------------1 OxBFOO
SHELL Global Data I

I
--------------------------------------1 OxBCOO
SHELL 1/0 Buffer I
-.-------------------------------------1 OxB900
Program Area I

I --------------------------------------1 Ox800
Screen Page 0 I

I
--------------------------------------1 Ox400
System Area I

I
--------------------------------------1 Ox200
Hardware Stack I

I
--------------------------------------1 Ox I 00
PqeO I

I
--------------------------------------1 0

For a BIN program running under ProDOS and the Basic
Interpreter, memory is organized similarly, except for the following
differences:

* The SHELL Areas are not present;
* The area between Ox9600 and OxBFOO is occupied by the Basic

Interpreter;
* The Program Area is between Ox800 and the value defined by

HIMEM (which is somewhere below Ox9600).

For a SYS program running under ProDOS, memory is organized
similarly, with the following differences:

* The SHELL Areas are not present;
* The Program Area is between Ox2000 (by default) and

- tech.4-

Aztec C65 TECH INFO

OxBFOO

·For a program running under DOS 3.3, the program area extends
from Ox800 to the value defined by HIMEM; the areas above HIMEM
are occupied by Basic and DOS, as defined in the DOS 3.3
documentation.

The following paragraphs discuss the program area and page 0 in
more detail

1.1 The Program Area

A program is loaded into the program area By default, a program
is organized into the following sections:

--------------------------------------1 High memory
Pseudo Stack I

I
--------------------------------------1
Heap I

--------------------------------------1
Overlay Area I

I
--------------------------------------1
Uninitialized Data I

I
--------------------------------------1
Initialized Data I

I
--------------------------------------1
Code I

I
I --------------------------------------1 Low memory

The following paragraphs discuss these areas.

1.1.1 The Code Area

The code area contains the executable code and the constants for a
program's root segment (ie, for its non-overlay segment). The area is
just large enough to contain the program's code and constants.

1.1.2 The Initialized and Uninitialized Data Areas

These two areas contain a program's global and static variables.

A variable is placed in the initialized data area if its definition
assigns an initial value to the variable. For example, a variable that's
defined outside all functions with the following statement would be
placed in the initialized data area:

int i=l;

- tech.S-

TECH INFO Aztec C65

Global and static variables for which no initial value is specified are
placed in the uninitialized data area.

When a program starts, the Manx-supplied startup code clears the
uninitialized data area.

These areas are just large enough to contain a program's global and
static data.

1.1.3 The Overlay Area

A program's overlays are loaded into the overlay area. The size of
this area is set when you link the program's root segment, to the sum
of the values specified in the +C and +D options. By default, these
options are set to zero, resulting in an overlay area that is zero bytes
long.

For more information on overlays, see the Overlay section of this
chapter.

1.1.4 The Heap

The heap is the area of memory from which buffers are
dynamically allocated

A program doesn't have direct control over the size of this area.
However, since this area is bounded below by the overlay area and
above by the pseudo stack area, a program can indirectly control the
size of this area by changing the size of the pseudo stack area, by
calling the rsvstk function.

1.1.5 The Pseudo Stack Areas

The hardware stack is at most 256 bytes long. Since a C program
makes heavy use of a stack, frequently requiring a stack that contains
more than 256 bytes, Aztec C has implemented a pseudo stack, whose
size is limited only by the amount of available memory.

The top of the pseudo stack area depends on the program and on
the environment in which it is running:

• For a PRG program running under ProDOS and the SHELL,
the pseudo stack top is just below the SHELL's I/0 Buffer. If
the program was activated using 1/0 redirection of its
standard I/0 devices and was passed command line arguments,
the pseudo stack top will be pushed downward to make room
for the the redirected devices' ProDOS I/0 buffers and for
the command line arguments.

• For a BIN program running under ProDOS and the SHELL,
the pseudo stack top is always immediately below the
SHELL's I/0 buffer area. (The standard I/0 devices of a BIN
program can't be redirected, and it can't be passed command
line arguments.)

• For a BIN program running under ProDOS and the Basic

- tech.6 -

Aztec C65 TECH INFO

Interpreter, or for a program running under DOS 3.3, the
pseudo stack top is at the location defined by HIMEM.

"' For a SYS program running under ProDOS, the pseudo stack
top is OxBFOO.

The base of the pseudo stack area is by default 2K bytes below its
top. A program can change the size of the pseudo stack area by calling
the rsvstk function.

1.1.6 Symbols related to Program Organization

The following global symbols are related to program organization.
The symbols are given in the form that an assembly language program
would use to access them.

_ Corg_ Name of the beginning of the program's code.

Cend Name of the first byte beyond the program's
executable code.

_ Dorg_ Name of the beginning of the program's initialized
data.

Dend Name of the first byte beyond the program's
initialized data.

_ Uorg_ Name of the beginning of the program's uninitialized
data.

Uend Name of the first byte beyond the program's
uninitialized data.

robot Name of a field containing a pointer to the beginning
of the program's heap.

Top Name of a field containing a pointer to the next byte
to be allocated from the heap.

A C module can access all the above symbols by removing the
appended underscore from the symbol name.

1.2 Page 0

An Aztec C-generated program makes the following use of page 0:

- tech.7-

TECH INFO

Location
0- 1
2- 3
4- 5
6- 7
8- B
C- F
10-13
14-17
18-lB
lC-lD
lE-lF

40-43

80-8F

Aztec C65

Use
Temporary storage
Pointer to top of pseudo stack
Pointer to current function's frame
Pointer to current pseudo-code instruction
Temporary Register RO
Temporary Register Rl
Temporary Register R2
Temporary Register R3
Temporary Register R4
Pointer to floating point accumulator
Pointer to floating point secondary

Temporary storage

Storage for program's register variables

- tech.8-

Aztec C65 Command Programs TECH INFO

2. Command Programs

Using the standard Aztec software, you can create programs of type
PRG, BIN, and SYS that run on ProDOS; and binary programs that
run on DOS 3.3. The main points of difference between the various
types of ProDOS programs are:

* Program activation. A PRG program only be started from
within the SHELL environment. A BIN or SYS program can
be started either from within the SHELL environment or by
the Basic Interpreter. A SYS program whose extension is
".system" can be started by ProDOS during system startup.

* 1/0 redirection. The standard i/o devices of PRG programs
can be redirected from the console to another device or file.
Those of BIN and SYS programs cannot be redirected

* Argument passing. When a PRG program is started, values can
be passed to it. The program sees the values as arguments of
its main function. Values cannot be passed to BIN and SYS
programs.

* Starting other programs. A PRG program can start other
programs, by calling any of the the exec functions that arc
described in the ProDOS Functions chapter. A BIN program
can use the exec functions to start other programs when it is
active within the SHELL environment, but not when it's in
the Basic Interpreter environment. A SYS program can never
use the exec function to start another program.

* Protection of the SHELL environment. The SHELL keeps
global information about its environment, which it needs to
maintain even during execution of programs, in a section of
memory just below the ProDOS global page. Execution of a
PRG or BIN program within the SHELL environment will not
modify this global information.

When a SYS program is started from within the SHELL
environment, it probably will destroy the SHELL global pages.
This destruction doesn't necessarily occur, however: when you
restart the SHELL with the SHELL already active, in order to
redefine the file from which the SHELL will be loaded, the
global information that was set up by the original SHELL is
not modified

* Passing configuration information. A PRG program knows
about the Apple configuration that has been defined to the
SHELL, and hence can make use of the configuration's special
features without being explicitly told A BIN or SYS program
must be explicitly told about the configuration, even when the
program is started by the SHELL.

* Passing open files and devices. When one PRG program starts
another, any files or devices that were left open for
unbuffered i/o in the calling program will still be open for

- tech.9-

TECH INFO Command Programs Aztec C65

unbuffered i/o in the called program. The called program can
access them using the same file descriptors as did the calling
program.

A DOS 3.3 program runs in the Basic environment Its standard
1/0 devices can't be redirected, it can't be passed command line
arguments, and it can't start other programs.

21 Creating Programs

The following paragraphs discuss the procedure for creating the
different types of programs.

21.1 Creating ProDOS PRG programs

If you don't do anything special when linking a program, the
program will be a ProDOS program of type PRG. For example,
linking the "hello, world" program using the following command will
create a PRG program:

In hello.o -lc

21.2 Creating ProDOS BIN programs

To create a Pro DOS BIN program, you must specify the + B option
and include the special startup routine samain.o when you link the
program. For example, the following command creates a BIN "hello,
world" program:

In +b hello.o samain.o -lc

21.3 Creating ProDOS SYS programs

To create a ProDOS SYS program, you must specify the +S option
and include the samain startup routine when you link the program.
The +S option causes the base address for the program to default to
Ox2000 and the extension of the file containing the program to default
to ".system".

For example, the following command creates a SYS "hello, world"
program that can be loaded by ProDOS when it starts:

In +s hello.o samain.o -lc

2.1.4 Creating DOS 3.3 programs

To create a program that runs under DOS 3.3, link the program
using the + B option and use one of the d. lib libraries instead of c. lib.
Move the program onto an Apple DOS disk using the standard ProDOS
conversion utility.

22 Creating Special Startup Routines

In this section we want to describe how you can substitute your
own startup routines for ours in your command programs. We first
describe the way that the linker decides what the startup routines are,

- tech.10 -

Aztec C65 Command Programs TECH INFO

and describe the startup routines that are provided with Aztec C65.
Next, we describe what the Aztec startup routines do. Finally, we
discuss different ways that you can modify the standard startup
routines.

2.21 How the linker finds the startup routines

If, among the modules that the linker includes in a command
program, a module is found whose assembly language source contains a
statement of the form

entry name

where name is a label within the module, then the linker makes name
the entry point of the program. If no such module is found, the entry
point is set to the first statement of the program's code segment

Execution of a command program normally begins at the label
.begin, which is in the module crtO. This module is in all the versions
of c.lib (c.lib, ci.lib, d.lib, and di.lib). The following facts account for
execution beginning at .begin:

* crtO contains the statement "entry .begin". No other Manx
supplied module contains an entry statement, and compiler
generated code doesn't contain an entry statement.

* When compiling a C source program, the compiler normally
writes the statement "public .begin" to the assembly language
source file.

* When the linker includes the object version of a C program
containing "public .begin" in the program it's building, the
statement causes the linker to look for a module containing
the label .begin, and, when found, to include the module in
the program that it's creating.

crtO performs activities that are described below, and then calls the
function main.

Two modules are supplied that contain a main function: shmain
and samain. main performs additional initialization activities as
described below and then calls the program's function main.

shmain is in c.lib and ci.lib. samain is its own file (samain.o), and is
also in the libraries d.lib and di.lib. When creating a ProDOS program,
you will be linking with c.lib or ci.lib and will have their shmain module
included in your program unless you explicitly tell the linker to
include samain.o or your own _main module in the program.

When creating a DOS 3.3 program, you will be linking with d.lib or
di.lib, and thus will have its samain included in your program unless
you explicitly tell the linker to include your own _main module in the
program.

- tech.ll -

TECH INFO Command Programs Aztec C65

222 What crtO Does

The .begin code in crtO performs the following actions:

* It sets up the field that points to the top of the pseudo stack
For a PRG or BIN program and for a DOS 3.3 program, this
field is set to the contents of the Basic HIMEM field For a
SYS program, this field is set to the base of the ProDOS
global page; that is, to OxbfOO.

* It clears the program's uninitialized data area
* It initializes the field Top, which points to the top of

allocated heap space, to the end of the Uninitialized data area
* It initializes pointers to the floating point accumulators.

The same crtO module is used for all types of programs, unless you
replace it with your own.

When a PRG program is started from within the SHELL
environment, the loader program sets up information for it just below
the pages that define the SHELL's global variables, and sets the
HIMEM field to the top of this stack This information consists of the
arguments that are being passing to the called program and the initial
stack for the called program. This stack contains the argc and argv
arguments for the called program's main function.

When a BIN program is started from within the SHELL
environment, the loader program sets the HIMEM field to the base of
the pages that contain the SHELL's global information.

223 The shrmin Module

The version of main that is in shmain simply sets up pointers to
the versions of the-device and unbuffered i/o tables that are in the
SHELL's global information pages, and then calls the program's main
function. When main returns, main calls the exit function, passing to
it the return code that was returned by main.

The device and unbuffered i/o tables are discussed in detail below.

224 The sannin Module

The version of main that is in samain first sets up pointers to the
device and unbuffered i/o tables that are contained in the program
itself. It then calls the program's main function, passing it 0 and a null
pointer for its argc and argv parameters. When main returns, _main
calls exit, passing the value 0 to it as the program's return code.

225 Customizing

Given this information, it should be clear how you can modify the
startup procedure for a program. For example, a program could use
our crtO and your own _main function.

- tech.12-

Aztec C65 Command Programs TECH INFO

Another possibility is to modify or replace our crtO. the new
version could call _rnain, call main directly, and so on.

Another possibility is to remove crtO from the version of c.lib with
which a program is linked, causing program execution to begin with
the first statement of the program.

2.3 Passing Open Files and Devices to PRG Programs

A PRG program "inherits" the description of an Apple
configuration as it has been defined to the SHELL, thus allowing it to
take advantage of the special features of an Apple without having to be
explicitly told about them. A BIN or SYS program, on the other hand,
has to be explicitly told about the configuration in which it runs.

A PRG program also inherits the files and devices that were left
open for unbuffered i/o by the calling program (SHELL or other
program); that is, these files and devices are open for the called
program, and it can access them using the same file descriptors as did
the caller.

In this section we're going to describe how this is done.

2.3.1 1be Device Table

The device table contains information about the devices that are
connected to an Apple. A PRG program uses the same device table as
the SHELL; thus, the configuration of an Apple need be defined just
once, to the SHELL. PRG programs will then automatically know, and
make use of, the configuration of the system on which they run.

The device table of BIN and SYS programs are contained in the
programs themselves; even when started by the SHELL, they don't use
the information that's in the SHELL's device table. Thus, before a
BIN or SYS program can make full use of the devices that are on an
Apple, the configuration must be explicitly defined to the program,
using the config program.

2.3.2 The Unbuffered 1/0 Table

Associated with a program is an unbuffered i/o table, which
contains an entry for each device or file opened for unbuffered i/o by
the program. PRG programs use the same unbuffered i/o table as does
the SHELL, which is located in the SHELL's environment pages. For
a program of type BIN or SYS, the unbuffered i/o table is in the
program's own space.

The unbuffered i/o table that is located in the SHELL's
environment pages changes only when a program that uses this table
opens or closes a file. Thus, if a program which uses this table leaves
some open entries in it and calls another program which uses it, the
same files and devices will be pre-opened for the called program, and
can be accessed by it using the same file descriptors that the calling

- tech.13 -

TECH INFO Command Programs Aztec C65

program used

The SHELL opens the standard i/o devices for a program before
activating it it simply closes its own standard i/o devices, opens them
to the desired files or devices, and starts the program. Since the
SHELL uses the unbuffered i/o table that is in the system area, as does
the called program, the program's standard i/o devices will be open
when it starts.

Since a BIN or SYS program uses its own unbuffered i/o table, it
won't see any redirection of standard i/o that the SHELL performs on
its own unbuffered i/o table.

2.3.3 The Standard 1/0 table

Contained within the program space of each program is a standard
i/o table. This table contains an entry for each file or device opened
by the program for standard i/o.

When a file or device is open for standard i/o, it's also open for
unbuffered i/o, since the standard i/o functions use the unbuffered
ijo functions to access a file or device.

Only a program's stdin, stdout, and stderr ijo devices are preopened
for standard i/o. This pre-opening isn't done by the SHELL or by a
startup routine: the entries in the standard i/o table for these devices
are preinitialized by source code to be associated with the first three
entries in the unbuffered i/o table.

Thus, redirection of a PRG program's stdin, stdout, and stderr
standard i/o devices is accomplished by simply redirecting the first
three entries in the unbuffered i/o table that is in the SHELL's
environment pages.

Since the standard i/o table is located in a program's own space,
files opened for standard i/o in one program aren't open for standard
i/o in the called program.

- tech.14-

Aztec C65 Overlay Support TECH INFO

3. Overlay Support

In order to allow you to run programs which are larger than the
limited memory size of a microcomputer, Manx provides overlay
support This feature allows you to divide a program into several
segments. One of the segments, called the root segment, is always in
memory. The other segments, called overlays, reside on disk and are
only brought into memory when requested by the root segment

If an overlay is in memory when the root requests that another be
loaded, the newly specified overlay overlays the first, that is, replaces
it in memory.

Overlays can also be "nested"; that is, an overlay at one level can
call another overlay nested one level deeper. However, an overlay
cannot call an overlay which is at the same level.

Figure 1 shows a program, run as a single module, that can be
logically divided into three segments. Figure 2 shows the same
program run as an overlay. In figure 2, module 1 and module 2 occupy
the same memory locations. A possible flow of control would be for
the base routine to call module 1, module 1 then returns to the root
and the root calls module 2, module 2 returns to the root and the root
calls module 1 again. Then module 1 returns to the root and the root
exits to the operating system.

Notice that all overlay segments must return to their caller and that
overlays at the same level cannot directly invoke each other.

Ox800

Ox9FO

OxlC20

1-----------------------------1
I root segment I
1-----------------------------1
I module 1 I
1-----------------------------1
I module 2 I
1-----------------------------1

Figure 1

1-----------------------------1
Ox800 I root segment I

1-----------------------------1
Ox9FO I I Ox9FO
1---------------------------1 I -----------------------------1
I module 1 II module 2 I
1---------------------------1 I -----------------------------1

Figure 2

- tech.15-

TECH INFO Overlay Support Aztec C65

3.1 Calling an Overlay

A program segment (root or overlay) activates an overlay by calling
the Manx-supplied function ovloader, which must reside in the root.
The call has the form

ovloader(ovlyname, pi, p2, p3, ...)

where ovlyname is a pointer to a character string identifying the
overlay name, and p1, p2, p3, ... are parameters that are to be passed to
the overlay as its first, second, third, ... parameters.

ovloader derives the name of the file containing the overlay from
the string pointed at by ovlyname, by appending the extension .ovr to
it.

We provide you with the source to ovloader. When you compile it,
you define the directories in which it will look for overlays: compiling
it with the option -DPATH will cause it to search all directories
specified in the PATH environment variable; compiling it without this
option causes it to search just the current directory. If you create an
overlaid program that will run under ProDOS outside of the SHELL
environment or that will run under DOS 3.3, you must use a version
of ovloader for it that looks for overlays in just the current directory,
since environment variables are only available to programs running in
the SHELL environment.

Each overlay must contain a function named ovmain, which you
must write and which can be different for each overlay, and must also
contain the Manx-supplied function named ovbgn. When an overlay is
loaded, ovloader calls the overlay's ovbgn function, which in turn calls
the overlay's ovmain function, passing to it the second, third, ...
arguments that were passed to ovloader.

When ovmain completes its processing, it simply returns. ovloader
then returns to the caller, returning as its value the value that was
returned by ovmain.

An overlay can access any global functions and variables that are
defined in the root segment and in the overlays that are currently
active. For example, if the root calls overlay ovly 1, which calls overlay
ovlyll, which calls overlay ovlyll1, then ovly111 can access the global
variables and functions that are defined in the root, in the overlays
ovly1 and ovlyll, and in itself. But if the root also calls overlay ovly2,
ovly 111 cannot access the global functions and variables that are in
ovly2, since ovly2 is not active when ovly111 is.

3.2 Creating a root and and its overlays

To create a root and its overlays, the linker must be run several
times, once to create the root, and once for each overlay. Each
program segment (root or overlay) will be placed in a separate disk
file.

- tech.16 -

Aztec C65 Overlay Support TECH INFO

The root must be created first. When overlays are nested, an
overlay that itself calls overlays must be linked before the overlays that
it calls.

When creating a program segment (root or overlay) which calls an
overlay, the option -R must be specified; this causes the linker to
generate a symbol table for use in linking the called overlay, placing it
in a file whose filename is the same as that of the first file specified in
the command line and whose extent is .rsm. When an overlay is
linked, the symbol table file of the program segment that calls the
overlay must be included in the linkage of the overlay.

When the root module is linked, the linker has to reserve some
space into which the overlay can be loaded This is done using the +C
and + D linker options, which define the amount of space needed for
the overlay code and data, respectively. If overlays are nested, a called
overlay is located in memory immediately following the calling
overlay. The amount of space reserved for the overlays must be
enough to hold the longest 'thread' of overlays.

3.3 Example 1: Non-nested Overlays

This example demonstrates overlay usage when the overlays are not
nested The root segment, which consists of the function main and any
neccesary run-time library routines, behaves as follows:

I. It calls the overlay ovly1, passing it as parameter a pointer to
the string "first message".

2. It prints the integer value returned to it by ovlyl;
3. It calls the overlay ovly2, passing it a pointer to the string

"second message";
4. It prints the integer value returned to it by ovly2.

The overlay ovly 1 consists of the function ovly 1, the Manx function
ovbgn, and any neccesary run-time library routines. It prints the
message "in ovlyl" plus whatever character string was passed to it by
main.

The overlay ovly2 consists of the function ovly2, the function
ovbgn, and any neccesary run-time library routines. It prints the
message "in ovly2", plus whatever character string was passed to it by
main.

- tech.17-

TECH INFO Overlay Support

Here then is the main function:

main() {
int a;

}

a = ovloader("ovly I" ,"first message");
printf("in main. ovlyi returned %d\n", a);
a = ovloader("ovly2","second message");
printf("in main. ovly2 returned %d\n",a);

Here is ovlyi:

ovmain(a)
char *a;
{

}

printf("in ovlyl. %s\n",a);
return I;

Here is ovly2:

ovmain(a)
char *a;
{

}

printf("in ovly2. %s\n",a);
return 2;

Aztec C6S

The following commands link the root (which is in the file root.c)
and the overlays:

In -R +C 4000 +D 1000 root.o ovioader.o -lc
In ovlyl.o ovbgn.o root.rsm -lc
In ovly2.o ovbgn.o rootrsm -lc

The command to link the root reserves Ox4000 bytes for the
overlay's code and OxiOOO bytes for it's data Techniques for
determining this value are discussed below.

When the segments are generated and the root activated, the
following messages appear on the console:

in ovlyl. first message.
in main. ovlyi returned I.
in ovly2. second message.
in main. ovly2 returned 2.

3.4 Example 2: Nested Overlays

In this example, there are three segments: a root segment, root, and
two overlays segments, ovlyl and ovly2. root calls ovlyl, which calls
ovly2. ovly2 just returns.

- tech.18-

Aztec C65

Here is the root

main()
{

Overlay Support

ovloader("ovlyl ","in ovlyl ");
}

Here is ovlyl:

ovmain(a)
char* a;
{

}

printf("%s\n",a);
ovloader("ovly2", "in ovly2");

Here is ovly2:

ovmain(a)
char *a;
{

printf("%s\n",a);
}

TECH INFO

The following commands link the root and the two overlays:

In -R root.o ovloader.o -lc
In -R ovlyl.o ovbgn.o rootrsm -lc
ln ovly2.o ovbgn.o ovlyl.rsm -lc

When executed, the following messages appear on the console:

in ovlyl
in ovly2

3.5 Determining the size of the overlay area

When you link the root module, you will have to know how much
memory to reserve for the overlay, that is, you will have to know how
large the overlay is. But since the overlays haven't been linked yet,
how can you know how much space is needed for overlays?

The easiest way is to guess. That is, estimate the size and go ahead
and link the root and the overlays, keeping track of the size of the
code and data for the overlays as reported by the linker.

After all overlays have been linked, the size of the area needed for
overlays is the size of the largest overlay (if overlays aren't nested) or
the size of the longest 'thread' of overlays (if they are nested). You can
then go back and relink the root, if necessary, with this value. You
won't have to relink any overlays, since the +C and +D options don't
affect the position of the overlays in memory.

- tech.19-

TECH INFO Overlay Support Aztec C65

3.6 Error messages from ovloader

If an error occurs while loading an overlay, ovloader will print a
message of the form

Error o/od loading overlay: %s

where o/od is a number defining the error and %s is the name of the
overlay. The error codes and their meanings are:

10 Can't open overlay file
20 Can't read overlay header record
30 Invalid header record
40 Overlay code & data overlaps with heap
50 Error reading overlay

3.7 Possible Problems

A possible source of difficulty in using overlays concerns initialized
data In the following program module, a global variable is initialized:

inti= 3;

function()
{

return;
}

The initialization of "i" is performed by the linker, rather than at
run time. In the same program, the following module is allowed:

int i;

main()
{

function();
}

The global variables in each module refer to the same integer, "i".
At link time, this variable is set to the value 3. Although this works
when the two modules are linked together, a problem arises when the
first module is linked as an overlay:

In func.o ovbgn.o main.rsm -lc

From the .rsm file, the linker knows that "int i" has been declared
in main.o, the root But it tries to initialize "i" from the statement in
the func.o module. This attempt fails because the variable "i" is part of
main.o, a module which is not included in the linkage.

An attempt to initialize, in an overlay, a variable which has been
declared in the root will produce an error:

attempt to ini ~ialize data in root

- tech.20-

Aztec C65 Overlay Support TECH INFO

The simple solution is to change the statement, "int i = 3", to the
following:

inti;
i = 3;

This assignment will be performed at run time, so that the linker
does not try to perform an initialization.

3.8 Source

The source for the ovloader and ovbgn functions are in the files
ovloader.c and ovbgn.a65. ovloader must be compiled by cc; as
mentioned above, it can be compiled with or without the option
-DPATH, as defined above. ovbgn must be assembled using as.

3.9 Cross-development and Overlays

3.9.1 Sending Overlaid programs to ProDOS

Overlaid programs for the Apple I I can be created using the cross
development versions of Aztec C65. But there are some rules to
follow when sending the root and overlay segments to ProDOS using
the xfer program:

* When a root segment is sent to ProDOS, specify the +P option
if the program is a PRG program that can only run under the
SHELL, and specify the +B option when sending a BIN or
SYS program to ProDOS that can run outside the SHELL
environment.

* When an overlay segment is sent to ProDOS, don't specify the
+P or +B options. That is, send an overlay segment to
ProDOS as a pure binary file.

The reason for these rules is that the linker that's supplied with
cross-development versions of Aztec C65 appends a four-byte header
to an executable program, a header that is required by DOS 3.3. Since
this header isn't used by ProDOS, xjer strips it off if you tell it, using
the +B or +P options, that an executable program is being transferred

When the cross-development linker creates an overlay, however, it
doesn't append this header, since the overlay is loaded by the Aztec
ovloader function and not by DOS 3.3 or ProDOS. So when an overlay
segment is sent to ProDOS, it must be sent without specifying the +P
or +B options, to prevent xjer from stripping off the first four bytes of
the overlay.

3.9.2 Sending overlaid programs to DOS 3.3

The only rule when sending overlaid programs to DOS 3.3 using
xjer is to send the root and overlay segments as binary files, that is,
without specifying the +A option.

- tech.21 -

TECH INFO Libraries Aztec C65

4. Libraries

Several libraries of object modules are provided with Aztec C65.
There are two versions of each library: the native code compiler and
assembler generated one version's modules; the pseudo code compiler
and assembler generated the other's modules.

The native code libraries are:

c.lib Most non-floating point functions: for ProDOS
programs.

mlib Floating point functions.
g.lib Graphics functions.
s.lib Screen functions.
d.lib DOS 3.3 version of c.lib.

The name of a pseudo code library is derived from its native code
counterpart by adding the letter 'i' to the name:

ci.lib
mi. lib
gi.lib
si.lib
di.lib

- tech.22-

Aztec C65 Assembly Language Functions TECH INFO

5. Interfacing to Assembly Language

This section discusses assembly-language functions that can be
called by, and themselves call, C-language functions.

5.1 Naming Convention

The compilers translate a global function or variable name into
assembler by truncating it to contain no more than 31 characters,
appending an underscore character ' ' to the truncated name, and
then generating a public directive for the resultant name.

For example, the following assembly language statements define the
entry point to an assembly language function that would be referred to
in a C language program using the name sum

public sum_
sum ;entry point to sum

5.2 Calling and Returning

On entry to a function, information about the call are on the tops
of both the 6502 hardware stack and the pseudo stack

At the top of the 6502 stack is the function's primary return
address; this is the address to which the function should return by
issuing an rts instruction. A non-reentrant function (ie, a function that
doesn't call itself) can leave its return address on the 6502 stack and
then return by issuing the 6502 rts instruction. For example, the very
simplest assembly language function, which does nothing but return to
the caller, would consist of just an rts instruction:

public nop_
nop_ rts

Because of limitations of the 6502 stack, a reentrant function
should save its return address on the pseudo stack When done, it
should return by doing an indirect jmp to the location whose address is
one greater than the saved address.

5.3 Returning a value

A function can return a int or long value by setting the value in
pseudo register RO, which is located in memory page 0. (The equ
statements that defines RO and all the other 0 page locations used by
Aztec C-generated programs are in the file zpage.h). The bytes of the
value are stored in order, with the least significant byte at address 8
and the most significant byte at the highest addressed location.

For example, here's a function that always returns the int value 1:

- tech.23-

TECH INFO Assembly Language Functions Aztec C65

ins txt "zpage.h"
public one

one Ida #l
sta RO
Ida #0
sta RO+l
rts

5.4 Passing parameters

On entry to a function, the parameters that are being passed to the
function and a secondary return address are on the pseudo stack, and
are accessed using the field named SP that is located in memory page 0
and that points to the top of the pseudo stack (As with RO, the equ
statement that defines SP is in the file zpage.h).

At the top of the pseudo stack is the two-byte secondary return
address. This is a different address from the return address that is on
the 6502 stack - a function should return using the address that's on
the 6502 stack The secondary return address is discussed in the
section of the Tech Info chapter that discusses the pseudo stack

Above the secondary return address on the pseudo stack are the
parameters that are being passed to the function. The function
parameters are in order on the pseudo stack, with the first parameter
immediately following the secondary return address, the second
parameter following the first, and so on. The bytes for a parameter are
also on the pseudo stack in order, with a parameter's least significant
byte at the lowest address and its most significant byte at the highest
address.

For example, suppose the function sum is passed two parameters, as
follows:

sum(argl, arg2);

On entry to sum , the pseudo stack will look like this (SRA means
"secondary return address"):

- tech.24-

Aztec C65 Assembly Language Functionf~ TECH INFO

1-----------------------------1
I I
1-----------------------------1
I arg2, high byte I
1-----------------------------1
I arg2, low byte I
1-----------------------------1
I argl, high byte I
1-----------------------------1
I argl, low byte I
1-----------------------------1
I SRA, high byte I
1-----------------------------1
I SRA, low byte I <-- SP
1-----------------------------1

5.5 An Example

The following assembly language function, named sum, is passed
two ints as arguments. It returns their sum as its value.

ins txt "zpage.h"
public sum

sum clc
ldy #2
lda (SP),Y
ldy #4
adc (SP),Y
sta RO
ldy #3
lda (SP),Y
ldy #5
adc (SP),Y
sta RO+l
rts

5.6 Page 0 Usage

A 6502 program makes extensive use of memory page 0. An
assembly language 6502 function should obey the following restrictions
on its usage of memory page 0 locations:

* It may use, without preserving, the two-byte-long VAL field
and the following four-byte-long fields: VAL, RO, Rl, R2, R3,
R4, and lMP.

* It must preserve the contents of the SP, FRAME, and
LFRAME (alias PC) fields and of the 16-byte REGS field

These locations are defined in the file zpage.h.

- tech.25-

TECH INFO Assembly Language Functions Aztec C65

5.7 Writing Programs that contain only Assembler

There are several topics concerning the linker which are important
if the assembler and linker are to be used without any compiled code.
The linker automatically creates several symbols that can be of use to
an assembly language program, defining the beginning and end of the
various program segments. These are described in the Memory
Organization section of this chapter.

The entry point to a program is defined using the assembly
language statement

entry loc

where Zoe is the name of the symbol where program execution is to
begin. If a module containing an entry statement isn't encountered by
the linker, it will set the program's entry point to the beginning of its
code segment. For a discussion of the startup routines that are
provided with Aztec C65, see the Command Programs section of this
chapter.

5.8 Mixing C and Assembler in one Module

To include assembly language source in a C language module,
surround the assembly language code with #asm and #endasm
directives.

Finding a good example where this construct is necessary is very
difficult, but here's a possible example:

rotate(arg)
{

register int i;

i = arg;
#asm

lda $81
rol A
rol $80
rol $$1

#endasm
return(i);

}

This routine rotates a two byte quantity one bit to the left. This
operation is messy in C and in a time critical application not feasible
to make an assembly language subroutine. This routine is not a good
example, since it would be better to write the entire thing in assembly.
However, in the middle of a larger routine, it might conceivably be
useful. This facility is provided as a last resort and is generally not
recommended as it is completely non-portable.

- tech.26-

Aztec C65 Debugging Pseudo Code TECH INFO

6. Debugging Pseudo-code

In this section we want to provide information which will facilitate
the debugging of cci-compiled modules using the monitor ROM.

You should debug programs using the monitor ROM only when all
other techniques, such as those described in the style chapter, fail.

6.1 The Symbol Table

In order to debug a program using the monitor ROM, you will need
the program's symbol table. To get it, specify the -t option when you
link the program, and then either print it or copy the important
addresses to paper.

6.2 Getting to the Monitor

When the SHELL is running, first tell the SHELL that you are
going to debug a program by entering the command

debug

Then enter the command to start the program in the normal way
(including arguments and i/o redirection, if desired). The SHELL will
load the program, perform i/o redirection for it, and set up the stack
as appropriate for the command line arguments. Normally, the SHELL
will then transfer control of the processor to the program; however,
when it sees the debug flag set, it will instead transfer control to the
monitor.

When the Basic Interpreter is active, first load the program using
the bload command Then transfer control to the monitor by entering

CALL -151

When you're done debugging the program from the monitor, you
can return to the command processor program that was active (SHELL
or Basic Interpreter) by entering

3DOG

Once in the monitor, you can set a breakpoint at the beginning of a
function of interest and then issue the monitor's G command to
transfer control to the program's starting address (which is usually
Ox800).

6.3 Breakpointing the Entry to a cci-compiled Function

At the beginning of a cci-compiled function is a 6502 jsr instruction
to the pseudo code interpreter. Following that is two bytes that specify
the amount of stack space to reserve for the function's local variables.
Following that is the function's pseudo code, which will be processed
by the interpreter.

A function is called by issuing a 6502 jsr instruction to the
function's entry point. This is true regardless of whether the calling

- tech.27-

TECH INFO Debugging Pseudo Code Aztec C65

and called functions are compiled using cc or cci.

Thus, to set a breakpoint at the beginning of a cci-compiled
function, replace the jsr opcode at its entry point (which is Ox20) with
the opcode for the 6502 brk instruction (which is 0).

When the breakpoint is encountered, control will revert to the
monitor. At any breakpoint, any global variables, whose addresses may
be found in the program's symbol table, can be examined or modified
using normal monitor commands.

When a breakpoint is taken at the entry point to a function, the
following information exists:

• If the calling function was compiled with cci, locations 6 and 7
contain the called function's secondary return address; that is,
the address of the byte in the calling function that follows the
pseudo-code call instruction.

* A pointer to the top of the pseudo stack is in locations 2-3.
At the top of the pseudo code stack is a two-byte field that
also contains the function's secondary return address.

• Above the secondary return address on the pseudo stack are
the parameters that are being passed to the function, with the
first parameter immediately above the secondary return
address, the second parameter above the second, and so on.

6.4 Determining a Function's Return Value

For the purposes of discussion, we shall assume that functions A
and B were both compiled with cci, that function A calls function B,
and that and we wish to determine the value returned by by B.

First, you must determine B's secondary return address. This is the
address of the byte following the pseudo code call to B. This can be
done in two ways:

• If B is called in just one place by A, you can set a breakpoint
at the beginning of function B. When the breakpoint at the
entry to B is hit, locations 6-7 will contain the secondary
return address.

• If function B may be called from a number of places, you
can't just set a breakpoint at the beginning of B, since the first
call to B may not be the one from function A In this case,
you must look through the bytes in function A for a call to
function B. This call, if direct, is three bytes long. It begins
with the opcode for a direct function call (OxAC if no
parameters are passed, Ox£9 if arguments are passed), and its
last two bytes contain the address of function B. The byte
following this instruction is B's secondary return address.

Once the secondary return address has been found, replace the byte
of the pseudo code instruction that follows the pseudo code call to B

- tech.28-

Aztec C65 Debugging Pseudo Code TECH INFO

with FFH This is the opcode for the pseudo code 'breakpoint'
instruction. If no parameters were passed to B, this instruction begins
at B's secondary return address. If parameters were passed, this
instruction begins one byte after B's secondary return address.

Next, start the program.

When the interpreter encounters the pseudo breakpoint instruction,
it will issue a 6502 brk instruction, which will display the address at
which the brk was executed (ie, somewhere within the interpreter) and
transfer control to the monitor. At this point, the value returned by
function B will be in locations 8-9 (8-B if a long is returned).

Continuing from a pseudo-code breakpoint can't be easily done.

- tech.29-

TECH INFO Object Module Format Aztec C65

7. The Format of Aztec C65 Object Modules and Libraries

This section describes the format of object modules and libraries
that have been generated by the Aztec C65 software, version 1.99. The
symbols and structures referred to in this paper are defined in the
header file object.h.

7.1 Object Module Format

An object module contains four sections: header, code, table of
named symbols, and table of unnamed symbols. These sections are
described in the following paragraphs.

7.1.1 The Header Section

The header section of an object module has the following structure:

struct module {

};

int m magic; j* type of object module *I
char m-name[8];/* module name *I
unsigned short m-code; /* module's code size *I
unsigned short m-data; /* module's data size *I
unsigned short m -static; /*module's bss data size*/
unsigned short m-global; /*named sym tbl off.* I
short m-nglobal;/* # of named symbols *I
unsigned short m -local; /*unnamed sym tbl off.* 1
short m-nlocal; /* # of unnamed symbols *I
unsigned short m-end; j* unnamed sym tbl end* I
unsigned short m-next; /* offset to next module *I
unsigned short m nfix /* # segment fixes required *I

The following paragraphs discuss the fields within the header structure.

m_magic

m name

Each of the different object module-related files created by
the Aztec C software begins with the m magic field, which
contains a "signature" that identifies the file's contents.
m_magic can have the following values:

M MAGIC Object module created by the assembler
M-OVROOT Rsm file created by the linker
M-LIBRARY Library of object modules

Contains the name of the object module. For object modules
created by the assembler and for rsm files, this field normally
contains null characters.

m _code, m _data, and m _static

Contain the size, in bytes, of an object module's code, data
and uninitialized data segments, respectively.

- tech.30-

Aztec C65 Object Module Format TECH INFO

m _global and m _ nglobal

m_global contains the offset, in bytes, from the beginning of
the module to the module's table of named symbols.
m_nglobal contains the number of entries in this table.

m local and m nlocal

m end

m next

m local contains the offset, in bytes, from the beginning of
the module to the module's table of unnamed symbols.
m nlocal contains the number of entries in this table.

m end contains the offset, in bytes, from the beginning of
the module to the end of its table of unnamed symbols.

m next contains the offset, in bytes, from the beginning of
the module to the end of the module.

7.1.2 Symbols Tables

An object module contains two types of symbols: unnamed and
named An 'unnamed symbol' is a symbol whose name begins with a
period followed by a digit. A 'named symbol' is any symbol that is not
unnamed

An object module has two symbol tables, one containing its named
symbols, and the other its unnamed symbols. A symbol table contains
entries, each of which describes one of the module's symbols. The
entry for a symbol has the following structure:

struct symtab {
char s type;

s-flags;
s value;

I* type of symbol *I
char
unsigned short

}

!* attributes of symbol *I
I* another attr of symbol *I

In addition, the entry for a named symbol is followed by a null
terminated string, which is the symbol's name.

The following paragraphs discuss the fields of the symtab structure.

s_type

The s type field in a symbol's table entry defines the type of
the symbol Possible values:

S ABS Symbol was defined to be a constant
value, using the assembler's equ
directive.

S CODE Symbol was defined within the code
segment.

S DATA Symbol was defined within the data

- tech.31 -

TECH INFO Object Module Format Aztec C65

s_flag;

s value

S UND

S BSS

segment
Symbol was used but not defined within
the program. Symbols that are defined
using the assembler's public directive
but that aren't defined in any
statement's label field have this type, as
do symbols defined using the
assembler's global directive. The
directive used to define a S UND
symbol can be determined from the
symbol's s value field, as defined
below. -
Symbol was defined using the
assembler's bss directive.

This field defines other attributes of a symbol. Possible values:

S GLOBL Set for symbols specified in public and
global directives.

S FIXED Set for symbols defined in some
statement's label field

The meaning of this field depends on the type of the symbol.
Symbol types and their associated values:

s type
S-ABS

S CODE

S DATA

S BSS

S UND

Meaning of s value
Value specified for the symbol in the
equ directive.
Offset of the symbol from the beginning
of the module's code segment
Offset of the symbol from the beginning
of the module's data segment.
Size, in bytes, of the symbol as defined
in the bss directive.
For an S UND symbol, s value is zero
if the symbol was defined in a public
directive and non-zero if it was defined
in a global directive. For a global
defined symbol, s_value contains the
value specified in the directive's size
operand

7.1.3 The Code Section

The code section of an object module contains a translated version
of the program. This format can be efficiently processed by the linker
as it generates an executable version of the program. It contains a
sequence of items, each of which directs the action of the linker. For

- tech.32-

Aztec C65 Object Module Format TECH INFO

example, some items contain actual code and data, which the linker
places in the output file, some cause the linker to reserve space in the
output file, and some just pass information to the linker.

The linker builds several segments of a program simultaneously: a
code segment, data segment, and an uninitialized data segment.
Exactly one of these segments is said to be 'selected' at a time. There
are loader items that select a segment

The linker maintains a location counter for each of the segments
that it is building. When a loader item requests that information be
placed in the program or that space be reserved in it, the linker
performs the requested operation in the current location of the
currently-selected segment.

A loader item is a sequence of one or more bytes, with the first
byte containing a code that identifies the item. Some codes are four
bits long, and some are eight bits long; in the former case, the code
occupies the most significant four bits of the byte.

Frequently, a loader item is two bytes long, with the item's code in
the high order four bits of the item's first byte and a value in the other
12 bits. In this case, the value is stored with the least significant four
bits in the first byte's least significant four bits, and the most
significant eight bits in the second byte. We call this format "12-bit
packed".

Descriptions of the loader items follow.

USECODE - Select code segment

The USECODE loader item selects the code segment. Data
generated by following loader items will be placed in the code
segment until another segment is selected

The code for a USECODE loader item is 8 bits long Oxf4.

USEDATA - Select initialed data segment

The USEDATA loader item selects the initialized data
segment Data generated by following loader items will be
placed in the code segment until another segment is selected

The code for the USED AT A loader item is Oxf5.

ABSDAT - Absolute data

The ABSDAT loader item defines a sequence of bytes that the
linker is to output 'as is' to the current location in the
currently-selected segment

The loader item's first byte contains the code identifier, 1,
in the most significant four bits, and the number of bytes to
be output, less one, in the least significant four bits. Thus,
this item can define one to sixteen bytes of absolute data

- tech.33-

TECH INFO Object Module Format Aztec C6S

The remaining bytes in the item are the absolute data

For example, the following ABSDAT A loader item defines
the three bytes AI, B2, and C3:

12 AI B2 C3

LCLSYM - local (ie, unnamed) symbol

The value of a LCLSYM loader item is the address at which
an unnamed symbol is located in memory.

The item is two bytes long, with the item's code, 6, in the
first byte's most significant four bits. The item's other twelve
bits contain contain the number of the symbol's entry in the
local symbol table, in 12-bit packed format

For example, given the assembly language code

dw .98
.98 dw 12

with .98 occupying the second entry in the table of unnamed
symbols, the following code would be generated for the dw
.98:

61 00

GBISYM - Global Symbol

The GBLSYM loader item is just like LCLSYM except that it
references an entry in the global symbol table rather than the
local symbol table.

The code for GBLSYM is the four-bit value 7.

SPACE - Reserve space

The SPACE loader item reserves a specified amount of space
at the current location in the currently-selected segment

The item is two bytes long, with the item's code, 8, in the
most significant four bits of the item's first byte. The other
twelve bits contain the number of bytes to reserve, less one,
in 12-bit packed format

For example, the following loader item reserves 5 bytes:

84 00

CODEREF - Code segment offset

The CODEREF loader item defines an offset from the
beginning of the module's code segment. The loader item has
as its value the absolute address corresponding to that offset

The CODEREF loader item is in two bytes, with the
CODEREF code, Oxa, in the high-order four bits of the item's

- tech.34-

Aztec C65 Object Module Format TECH INFO

first byte. The item's other 12 bits contain the offset, as a
positive number, in 12-bit packed format.

DATAREF - Data segment offset

The DATAREF loader items is the same as the CODEREF
loader item, except that the offset is relative to the beginning
of the module's data segment.

The code for DATAREF is Oxb.

BSSREF - BSS segment offset

The BSSREF loader item is the same as the CODEREF loader
item, except that the offset is relative to the beginning of the
module's bss segment.

The code for BSSREF is Oxc.

LRGCODE - Code segment offset, large form

The LRGCODE loader item takes a 16-bit value that
represents an offset from the beginning of its code segment,
and generates as its value the absolute memory address of the
location.

The loader item is in three bytes, with the first containing
the item's 16-bit code, Oxf7. The other two bytes contain the
positive offset, with the offset's most significant byte in the
high-order byte.

LRGDATA - Data segment offset, large form

The LRGDATA loader item is the same as LRGCODE except
that the offset is relative to the beginning of the module's data
segment.

The code for the LRGDATA loader item is Oxf8.

LRGBSS - BSS segment offset, large form

The LRGBSS loader item is the same as LRGCODE except
that the offset is relative to the beginning of the module's BSS
segment.

The code for the LRGBSS loader item is Oxfb.

SMLINT - small integer

The SMLINT loader item defines an integer between 0 and
15, inclusive. This item can be used by itself or as an element
of an EXPR loader item

The loader item consists of a single byte. Its most
significant four bits are the item's code, 3; and the least
significant four bits are the integer value.

- tech.35-

Aztec C65 Object Module Format TECH INFO

corresponding values and operations are:

code value operation
ADD I Add the two loader items that follow
SUB 2 Subtract the following two loader items
MUL 3 Multiply the following two loader items
DIY 4 Divide the first item that follows by the

MOD

AND
OR
XOR

RSH

LSH

NOT
NEG

5

6
7
8

9

10

11
12

second
Compute the modulus of the first item
relative to the second
Logical AND of the following two items
Logical OR of the following two items
Exclusive OR of the following two
items
Right shift first item the number of bits
defined by second item
Left shift first item the number of bits
defined by the second
Logical NOT of item that follows
Compute two's complement of the item
that follows

The items that can follow an EXPR item are SMLINT,
MEDINT, LRGINT, LCLSYM, GBLSYM, CODEREF,
DATAREF, BSSREF, LRDCODE, LRDDATA, LRDBSS, and
another EXPR

For example, given the assembly language code

dw a+4

with the entry for a being the fourth entry in the table of
named symbols, the following loader items would be
generated:

21 73 00 34

As mentioned above, an EXPR can have another EXPR as
one of its loader items. In this case, the inner EXPR is
evaluated, using the loader items that follow it, and then the
outer EXPR is evaluated, using the resultant value of the
inner EXPR as one value and whatever loader items are left
for the other values. The loader items for the entire
expression are thus in prefix-Polish notation. For example,
the above expression, a+4, is represented by the loader items
that correspond to

+a4

And the expression

(a+b)*c

- tech.37-

TECH INFO Object Module Format Aztec C65

would be represented by loader items that correspond to

*+abc

BEXPR - Evaluate byte expression

The BEXPR loader item has as its value the 8-bit value of the
expression that follows it BEXPR has an 8-bit code, Oxfl.
BEXPR doesn't have an extra four bits in which an operation
code can be placed; thus, to generate an 8-bit value from an
expression, a BEXPR loader item will usually precede an
EXPR loader item that is in turn followed by the loader items
for the expression.

BREL - compute offset from location counter, byte form

The BREL loader item takes a relocatable value that
represents a location in the module and generates the offset of
the location from the current location counter.

The BREL loader item begins with a 8-bit code, Oxf2. It's
followed by loader items representing the location.

For example, if the symbol abc is the fourth symbol in the
global symbol table, then the loader items to generate the
offset of the location that is four bytes beyond abc are

f2 21 73 00 34

WREL - compute offset from location counter, word form

The WREL loader item is the same as BREL except that it
generates a 16-bit value instead of an 8-bit value.

STARTAD - Define program start address

The STARTAD loader item defines the address at which a
program containing the module is to begin execution.

The item begins with the item's 8-bit code, Oxf6. It's
followed by loader items identifying the starting address; these
can be a GBLSYM, LCLSYM, EXPR, or any of the other
"expression items" mentioned above.

INTJSR - Generate opcode for a subroutine call

The INTJSR loader item is translated by the linker into a
machine-specific opcode that will cause a subroutine to be
called The loader item has the value Oxf9.

The instructions in a function that has been compiled with
the interpretive compiler consist of a call to the Aztec
interpreter routine followed by the function's other
instructions. This first instruction is directly executed by the
machine; the function's other instructions are in a pseudo
code that is indirectly executed, by the Aztec interpreter.

- tech.38-

Aztec C65 Object Module Format TECH INFO

It is desirable to allow the interpretive compiler to
generate object modules that can be executed on different
machines, and to allow a single object module generated using
this compiler to be linked for execution on different
processor chips. To support this, the interpretive compiler
generates as a function's first instruction a special call
instruction, in the pseudo code assembly language, to the
interpreter. The pseudo code assembler translates this
instruction into an INTJSR loader item followed by a
GBLSYM loader item that references the interpreter routine.
The machine-specific linker then translates this pair of loader
items into a machine-specific call to the interpreter.

THEEND - End of axle

The TIIEEND loader item identifies the end of the code
section of the object file.

The code for the item is 00.

7.2 Object Library Format

A library of object modules consists of the object modules and a
directory of sym bois names.

7.2.1 Object Modules in a Library

When an object module is placed in a library its sections are
reorganized but the contents of the module are left unchanged (with
the exception of the module's header, whose fields are modified to
reflect the reorganization). The module's header still is at the
beginning of the module. This is followed by the table of named
symbols, the table of unnamed symbols, and the code section.

The header is modified to define the positions of the tables in the
reorganized module, and the module is given a name in its m_name
field The name is derived from the name of the file that contained
the module by removing the file name's extension.

7.2.2 Library Dictionary

A library's dictionary consists of one or more blocks that are
chained together. A block has the following structure:

struct newlib {

}

short nl magic;
unsignedshort nl next;
char nl_dict[LBSIZE];

I* magic number for libraries *I
I* loc of next dir block *I
I* dictionary for block *I

nl diet contains entries, each of which defines one symbol that is
defined in a library module. The entry for a symbol consists of a short
int that defines the position of the module that defines the symbol (the

- tech.39-

TECH INFO Object Module Format Aztec C65

absolute location at which the module begins, divided by 128), and a
null-terminated string that is the symbol's name.

- tech.40-

Aztec C65 DOS 3.3 Support

8. Making DOS 3.3 Programs

8.1 DOS 3.3 Files

TECH INFO

The following files are provided for the creation of programs that
can be run on DOS 3.3:

* d.lib, a DOS 3.3 version of c.lib. The modules in this library
have been compiled with cc;

* di.lib, a DOS 3.3 version of ci.lib. The modules in this library
have been compiled with cci.

* d33roota.o, a startup routine for DOS 3.3 programs that will
prompt the operator for a command line, and call the
program's main function with the function's argc and argv
parameters set appropriately.

* dos33.arc, source archives for the DOS 3.3 functions.

* convert, an Apple utility for transferring programs from a
ProDOS disk to a DOS 3.3 disk.

8.2 Creating DOS 3.3 Programs

To create a program that can be run on DOS 3.3, link the program
using either d.lib or di.lib instead of c.lib or ci.lib; also, specify the +b
option to the linker. If you want the program's startup code to read a
line from the console and then pass the program's main function an
argc and argv parameter list, include the d33roota.o in the command
line to the linker. (if you don't specify this module, another startup
routine, which is in the DOS 3.3 library, will be included in the
program; this startup routine will pass 0 as argc and argv parameters to
the main function.)

A DOS 3.3 program that you create can be transferred from a
ProDOS disk to a DOS 3.3 disk using the standard ProDOS convert
program. For a description of this program, see the ProDOS User's
Manual.

8.3 Features of DOS 3.3 Programs

The following paragraphs discuss special features of the DOS 3.3
libraries.

8.3.1 DOS 3.3 Filenames

A DOS 3.3 filename has the following form:

name[,sxx][,dyy][, vzz]

where square brackets surround optional items. The items have the
following meanings:

• name is the name of the file. It can contain up to 30
characters; all characters are valid, including spaces and

- tech.41-

TECH INFO DOS 3.3 Support Aztec C65

control characters.

* sxx specifies that xx is the number of the slot to which is
connected the drive containing the disk that contains the file.
If this item is not specified, the slot number is set to the value
that's in the global int DSLOT, which by default has the
value 6. Thus, if you don't specify the slot on which a file is
located, and if you don't change DSLOT, the file is assumed
to be in a drive that's connected to slot 6.

* dyy specifies that yy is the number of the drive containing the
disk that contains the file. If this item is not specified, the
drive number is set to the value that's in the global int
_DDRWE, which by default has the value l.

* vzz specifies that zz is the number of the volume containing
the file. If this item is not specified, the volume number is
set to the value that's in the global int DVOLUME, which by
default has the value 0. -

For example, the following filename defines a file named hello.c
that is on slot 5, drive 2, volume 1:

hello.c,s5,d2, v 1

The next filename defines a file named hello.c that is on the slot whose
number is in DSLOT, drive 2, and the volume whose number is in

DVOLUME:-

hello,d2

8.3.2 File Type

There is a third parameter to the open and creal functions, which
defines the type of the file. For a TEXT file, this parameter is 0; for a
BINARY file, it's 4.

The /open and /reopen functions create a TEXT file. To create and
open a file of another type for standard i/o, first create and open the
file for unbuffered IjO, by calling open or creat; then make the file
accessab1e by the standard i/o functions by calling fdopen.

8.3.3 Positioning a file

The /seek and fseek functions allow a file to be positioned relative
to its beginning and to its current position, but not relative to its end
That is, the third parameter to these functions can be 0 or 1, but not 2.

Similarly, the unbuffered and standard i/o open functions do not
support the "append" options. That is, fopen, /reopen, and fdopen don't
support the a and a+ modes; and open doesn't support the O_APPEND
mode.

- tech.42-

Aztec C65 DOS 3.3 Support TECH INFO

8.3.4 Error codes

When the DOS file manager returns an error code, its ProDDOS
equivalent is stored in the global integer errno. The original DOS error
code is stored in the global integer d33errno.

The perror function is supported, but not the global array of error
messages sys_errlist or the global integer sys_nerr.

8.3.5 Temporary files

The function tmpnam creates a name that is unique on the default
drive (that is, on the drive defined by DSLOT, DDRWE, and
_ DVOLUME). - -

The tmpfile function always creates a temporary file on the default
drive.

- tech.43-

TECH INFO TMPDEV Console Driver Aztec C65

9. The TMPDEV Coosole Driver

tmpdev is a stripped-down console driver that supports line-oriented
console 1/0. It is designed to be used by programs that perform line
oriented console ij o and that also need to be as small as possible.

To include the tmpdev console driver in a program in place of the
normal console driver, specify the tmpdev object module to the linker.
For example:

In prog.o tmpdev.o -lc

- tech.44-

Aztec C65 Index

INDEX

Order of chapters in manual

System Dependent Chapters

title code

Overview ov

Tutorial Introduction .. tut

The Shell ... sh

The Compiler ... cc

The Assembler .. as

The Linker .. ln

Utility Programs ... util

Library Functions Overview: Apple II Information libov65

Apple II functions .. lib65

Technical Information........... . .. tech

System Independent Chapters

Overview of Library Functions ... libov

System-Independent Functions .. lib

Style ... style

Compiler Error Messages ... err

Index .. Index

-Index. 1 -

Index Aztec C65

-Index. 2-

Aztec C65

exit
-file

lib65.17
cc.l4
cc.l4

cc.l4
lib65.24

-func
-line
_system

A
absolute value lib.l6
access lib65.6 , 7
accessing devices libov.8
acos lib.59-60
agetc lib.25-26
aputc lib.4l-42
arcv util.4
argument passing sh.21
array subscripting style 18
asctime lib65.35
asin lib.59-60
assembler directives:

bss as.8
cseg as.8
dseg as.8
end as.8
entry as.8
equ as.8
feb as.9
fcc as.9
fdb as.9
global as.8
instxt as.9
public as.8
rmb as.9

assembler operating
instructions as.3

assembler options:
-c as.5
-1 as.5
-o objname as.5
-zap as.5

assembler statement syntax as.6
assert lib5.8
assign buffer to a stream lib.56
atan lib.59-60
atan2 lib.59-60
atof lib.8
atoi lib.8
atol lib.8

Index

B
boolean expressions style 16-17
break lib65.9
bss directive as.8
buffered binary input lib.20-21
buffered output lib.20-21
buffering libov.l0-11
build and unbuild real-

numbers lib.22
bye util.5

c
c source file cc.3
calloc lib.31-32
cat sh.ll, uti1.6
cbreak libov.21
cd util. 7
ceiling lib.l6
change current position within

a file lib.29-30
char cc.l6
character classification

funtions lib.ll
character oriented-

input libov65. 7, libov.l8
circle lib65.11
cleanup tutor. 7
clearerr li b.l5
close a device or-

a file lib.9, libov.9
close a stream lib.l4
close lib.9
cmp util.9
cnm:

ab util.ll
bs util.l2
dt util.l2
gl util.l3
ov util.l2
pg util.ll
un util.l2

color lib65.12
command line-

arguments libov.4-6, sh.21
comments style 17
common problems style 15-19
compiler operating-

instructions cc.3

-Index. 3-

Index

compiler options:
-a cc.7
-b cc.7
-d symbol[=value)
-e num cc.7, 9
-i dir cc.7, 8
-1 num cc.7, 8
-o file cc.7
-s cc.7, 8
-t cc.7
-y num cc.7, 9
-z num cc.7, 10
pro-dos cc options:

+b cc.7, II
+c cc.ll
+1 cc.ll

console i/o overview
console i/o:

character oriented-
input libov65. 7

line oriented input
screen control codes
sgtty fields:

cc.7, 8

libov.l7-21

libov65.7
libov65.9

sg erase libov65.8
sg -flags libov65.8
sg -kill libov65.8

controfk:eys sh.24
convert ascii to numbers lib.8
convert floating point to-

ascii lib.8
copy shell to working disk tutor.5
cos lib.59-60
cosh lib.61
cotan lib.59-60
cp sh.ll, util.l4
creat lib. I 0
create a new file li b.l 0
creating programs cc.l3
cseg directive as.8
ctime lib65.35
ctop 1i b65.13

D
data formats:

char cc.l6
double cc.l7
float cc.l7
int cc.l6

long cc.l7
pointer cc.l6
short cc.l6

date uti1.15
debug util.l6

Aztec C65

default mode libov.7,17,20
defensive programming style I 0
device configuration sh.23
device i/o overview libov. 7
device i/o:

console libov65.6
printer libov65.6
serial device libov65.6
slot devices libov65.6

device i/o utilities lib.28
df sh.ll, util.l7
diff:

-b option util.l8
affected lines uti1.20
command line util.I9
conversion list uti1.19

directives, assembler as. 7
directory commands sh. 8
directory names sh. 7
dos 3.3 information libov65.4
double cc.17
drw lib65.21
dseg directive as.8
dynamic buffer-

allocation libov.ll,22

E
echo mode libov.21
echo utiL22
echoe flag libov65.8
editor uti1.52 - util.56
end directive as.8
entry directive as.8
environment variables sh.32
eof:

geteof lib65.14
seteof lib65.14

equ directive as.8
errno lib65.27
error checking cc.23
error processing libov.23-24
exec files:

comments sh.30

-Index. 4-

Aztec C65

exec file arguments sh.26
exec file variables sh.28
loops sh.30

exec! lib65.15- 16
execlp 1ib65.15 - 16
executable file ln. 7
execv lib65.15 - 16
execvp lib65.15 -16
exit lib65.17
exp 1ib.12-13
exponential lib.12-13

F
fabs lib.16
feb directive as.9
fcc directive as.9
fclose lib.l4
fdb directive as.9
fdopen lib.l7-19
feof lib.15
ferror lib.15
fflush lib.14
fgets lib.27
file i/o libov.6,9-13,15
file names sh.7, tutor.9
file redirection sh.14
file system sh.4
fileinfo lib65.18
file no li b.15
filer:

exit to shell tutor.3
starting filer tutor.3

fixnam lib65.19
float cc.l7
floating point exceptions cc.l8
floor lib.l6
flush a stream lib.15
fopen lib.l7-19
format lib.37-40
formatted input-

conversion lib.49-55
formatted output conversion-

functions lib.37-40
fprintf lib.37-40
fputs lib.43
fread lib.20-21
free lib.31-32
freopen lib.17-19

frexp lib.22
fscanf lib.49-55
fscreen mode lib65.25
fseek lib.23-24
ftell lib.23-24
ftoa lib.8
functions calls style 13-14
fwrite lib.20-21

G

Index

get a string from a stream lib.27
get time lib65.35
getc lib.25-26
getchar lib.25-26
getenv lib65.21
geteof lib65.14
getfinfo lib65.18
getprefix lib65.30
gets lib.27
getw lib.25-26
global directive as.8
global variables cc.l5
gmtime lib65.35
graphics functions lib65.3
grep:

H

backslash character util.26
brackets util.27
dollar sign and caret util.27
matching character-

strings util.24
matching single

characters utiL23
options:

c util.23
f util.23
1 util.23
n util.23
v util.23

patterns util.23
repeated characters util.27
special character '.' util.26

hd util.21
hex dump utiL21
hgr mode lib65.25
hyperbolic functions lib.61

-Index. 5-

Index

I
index lib.62-63
initialize devices util.47
inqumes li b.l5
instxt directive as.9
int cc.l6
ioctl lib.28
isalnum lib.ll
isalpha lib.11
isascii lib.11
isatty lib.28
iscntrl lib.11
isdigi t lib. 11
islower lib.l1
isprint lib.ll
ispunct li b.l1
isspace lib.ll
isupper lib.11

L
labels as.6
1b util.30 - 40
ldexp lib.22
learning c idioms style 3
line continuation cc.13
line oriented input libov65. 7
line-oriented input 1ibov.17-18
lineto lib65.21
linker options:

-f file ln.9, 10
-1 name ln.9, 10
-m ln.9, 11
-n ln.9, 12
-o file ln.9, 10
-t ln.9, 11
-v 1n.9, 12
overlay options:

+c size ln.9, 13
+d size ln.9, 13
-r ln.9, 13

pro-dos specific options:
+b ln.9, 13
+h start,end ln.9, 13
+s ln.9, 13

segment address specification:
-b addr ln.9, 12
-c addr ln.9, 12
-d addr ln.9, 12

Aztec C65

-v addr ln.9, 12
linker usage ln. 7
linking process ln.4
loading the shell tutor. 9
localtime lib65.35
lock util.41
lock/unlock sh.11
logarithm lib.12-13
long cc.17
1ongjmp lib.57-58
ls tutor.8, uti1.42
lseek lib.29-30

M
malloc lib.31-32
memory allocation lib.31-32
merge strings cc.14
missing semicolon style.15
mkarcv util.4
mkdir lib65.22
mkdir util.44
mktmp lib65.23 - 24
mode:

fcreen lib65.25
hgr lib65.25
mscreen lib65.25
text lib65.25

modf lib.22
modularity style. 7
movmem lib.33
mpu symbols cc.21
mscreen mode lib65.25
mv sh.l1, util.45

M
names cc.15
nesting errors style 17
nodelay libov.l7
non-local goto lib.57-58

0
object code file cc.4
object file-

librarian util.30 - 40
open a stream lib.17-19
open lib.34-36
opening files:

random i/o libov65.4

-Index. 6-

Aztec C65

sequential i/o libov65.4
opening files and-

devices libov.2,6,9
ord util.46
order of evaluation style 16
overlay use options:

p

+c size ln.9, 13
+d size ln.9, 13
-r ln.9, 13

page lib65.21
passing data to functions style 18
path identifiers sh.7
perror:

errno lib65.27
sys errlist lib65.27
sys-nerr lib65.27

plot lib65.29
plotchar lib65.28
point lib65.29
pointer cc.16
power lib.12-13
pr util.47
pre-opened devices libov.4
prefix:

getprefix lib65.30
setprefix lib65.30

printf lib.37-40
pro-dos activation of shell sh.35
profile sh.39
prompts:

primary sh.l9
secondary sh.l9

ptoc lib65.13
public directive as.8
push a character back into-

input stream lib.65
put a character string to-

a stream lib.43
putc lib.41-42
putchar lib.41-42
puterr lib.41-42
puts lib.43
putw lib.41,42
pwd util.48

Q

Index

qsort lib.44-45
quoted strings sh.16 , 1 7

R
random i/o libov.6,10, libov65.4
random number generator lib.46
raw mode libov.20-21
read lib.47
readable code style 5
realloc lib.31-32
register variables cc.19
relocatable object file ln.3
rename a disk file lib.48
reposition a stream lib.23-24
reserved words cc.15
rindex lib.62-63
rm sh.ll, util.49
rmb directive as.9
rsustk lib65.9
run-time errors style 12

s
sbreak lib65.9
scanf lib.49-55
screen control codes libov65.9
screen functions:

scr beep lib65.31
scr-bs lib65.31
scr-cdelete lib65.31, 32
scr cinsert lib65.31, 32
scr clear lib65.31, 32
scr cr lib65.31, 32
scr curs lib65.31, 32
scr cursrt lib65.31, 32
scr cursup lib65.31, 32
scr eol lib65.31, 32
scr-home lib65.31, 32
scr-ldelete lib65.31, 32
scr-lf lib65.31, 32
scr -linsert lib65.31, 32
scr-tab lib65.31

searching for command
files sh.35

segment address specification
options:
-b addr ln.9, 12
-c addr ln.9, 12

-Index. 7-

Index

-v addr ln.9, 12
segment address

specifications ln.9 - 12
sequential i/o-

libov.6, I 0, libov65.4
serial device libov65.6
set command sh.l9, uti1.50
set asp lib65.11
setbuf lib.56
seteof lib65.14
setfinfo lib65.18
setiob lib65.33
setjmp lib.57-58
setmem lib.33
setprefix lib65.30
sg erase libov65.8
sg -kill libov65.8
sgtty fields libov.l9, libov65.8
shared data style 19
shell:

.profile sh.39
argument passing sh.21
cat sh.ll
console i/o sh.23
control keys sh.24
copying to working-

disk tutor.9
cp sh.ll
device configuration sh.23
df sh.ll
directory commands sh.8
directory names sh. 7
environment-

variables sh.32, cc.6
exec files sh.26
file names sh. 7
file redirection sh.l4
file system sh.4
loading tutor.9
lock sh.ll
mv sh.ll
path identifiers sh. 7
pro-dos activation of shell sh.36
prompts sh.l9
quoted strings sh.l6, 17
rm sh.ll
searching for command

files sh.35

Aztec C65

unlock sh.ll
shell substitutions sh.l9
shift util.51
short cc.l6
sign extended character-

variables cc.21
sin lib.59-60
sinh lib.61
slot devices libov65.6
sort an array lib.44-45
sprintf lib.37-40
sqrt lib.l2-13
square root lib.l2-13
sscanf lib.49-55
standard error sh.l4
standard i/o-

f unctions libov.l2-13
standard input sh.l4
standard output sh.l4
start the filer tutor.3
strcat lib.62-63
strcmp lib.62-63
strcpy lib.62-63
stream status lib.l5
string merging cc.l4
string operations lib.62-63
strlen lib.62-63
strncat lib.62-63
strncmp lib.62-63
strncpy lib.62-63
structure assignment cc.l3
structured programming style 7
swapmem lib.33
sys errlist lib65.27
sys-nerr lib65.27
system lib65.24
system-independent-

programs libov.l8

T
tabsiz field libov65.8
tan lib.59-60
tanh lib.61
text mode lib65.21
time:

asctime lib65.35
ctime lib65.35
get_time lib65.35

-Index. 8-

Aztec C65 Index

gmtime lib65.35
localtime lib65.35
time lib65.35

tmpfile lib65.37
tmpnam lib65.38
tolower lib.64
top-down programming style 8-9
toupper lib.64
trigonometric-

functions lib.59-60

u
unbuffered ind standard i/o calls libov.7
unbuffered ijo libov.14-16
ungetc lib.65
uninitialized variables style 15
unlink lib.66
unlock util.41

v
variable names cc.l5
ved util.52 - util56
void data type cc.l3

w
write lib.67
writing programs cc.13

X
ztab field libov65.8

-Index. 9-

OVERVIEW OF LIBRARY FUNCTIONS

- libov.l-

Library Overview Aztec C

Chapter Contents

Overview of Library Functions ... Iibov
I. 1/0 Overview .. 4

1.1 Pre-opened devices, command line args 4
1.2 File 1/0 ... 6

1.2.1 Sequential 1/0 ... 6
1.2.2 Random 1/0 .. 6
1.2.3 Opening Files .. 6

1.3 Device 1/0 ... 7
1.3.1 Console 1/0 ... 7
1.3.2 1/0 to Other Devices ... 7

1.4 Mixing unbuffered and standard 1/0 calls 7
2. Standard 1/0 Overview ... 9

2.1 Opening files and devices ... 9
2.2 Closing Streams ... 9
2.3 Sequential 1/0 ... 10
2.4 Random 1/0 I 0
2.5 Buffering .. 10
2.6 Errors .. II
2.7 The standard 1/0 functions .. 12

3. Unbuffered 1/0 Overview ... 14
3.1 File 1/0 ... 15
3.2 Device 1/0 ... 15

3.2.1 Unbuffered 1/0 to the Console 15
3.2.2 Unbuffered 1/0 to Non-Console Devices 16

4. Console 1/0 Overview .. 17
4.1 Line-oriented input .. 17
4.2 Character-oriented input ... 18
4.3 Using ioctl .. 19
4.4 The sgtty fields .. 19
4.5 Examples .. 20

5. Dynamic Buffer Allocation .. 22
6. Error Processing Overview .. 23

- libov.2-

Aztec C Library Overview

Overview of Library Functions

This chapter presents an overview of the functions that are
provided with Aztec C. It's divided into the following sections:

1. f/0: Introduces the i/o system provided in the Aztec C
package.

2. Standard 1/0: The i/o functions can be grouped into two
sets; this section describes one of them, the standard i/o
functions.

3. Unbuffered 1/0: Describes the other set of i/o functions,
the unbuffered

4. Console 1/0: Describes special topics relating to console
i/o.

5. Dynamic Buffer Allocation: Discusses topics related to
dynamic memory allocation.

6. Errors: Presents an overview of error processing.

The overviews present information that is system independent.
Overview information that is specific to your system is in the form of
an appendix to this chapter; it accompanies the system dependent
section of your manual.

- libov.3-

LIBRARY 1/0 Overview Aztec C

1. Overview of 1/0

There are two sets of functions for accessing files and devices: the
unbuffered i/o functions and the standard ijo functions. These
functions are identical to their UNIX equivalents, and are described in
chapters 7 and 8 of The C Programming Language.

The unbuffered i/o functions are so called because, with few
exceptions, they transfer information directly between a program and a
file or device. By contrast, the standard i/o functions maintain buffers
through which data must pass on its journey between. a program and a
disk file.

The unbuffered i/o functions are used by programs which perform
their own blocking and deblocking of disk files. The standard i/o
functions are used by programs which need to access files but don't
want to be bothered with the details of blocking and deblocking the
file records.

The unbuffered and standard i/o functions each have their own
overview section (UNBUFFERED I/0 and STANDARD I/0). The
remainder of this section discusses features which the two sets of
functions have in common.

The basic procedure for accessing files and devices is the same for
both standard and unbuffered ijo: the device or file must first be
"opened", that is, prepared for processing; then i/o operations occur;
then the device or file is "closed".

There is a limit on the number of files and devices that can
simultaneously be open; the limit on your system is defined in this
chapter's system dependent appendix.

Each set of functions has its own functions for performing these
operations. For example, each set has its own functions for opening a
file or device. Once a file or device has been opened, it can be
accessed only by functions in the same set as the function which
performed the open, and must be closed by the appropriate function in
the same set. There are exceptions to this non-intermingling which are
described below.

There are two ways a file or device can be opened: first, the
program can explicitly open it by issuing a function call. Second, it can
be associated with one of the logical devices standard input, standard
output, or standard error, and then opened when the program starts.

1.1 Pre-opened devices and command line arguments

There are three logical devices which are automatically opened
when a program is started: standard input, standard output, and
standard error. By default, these are associated with the console. The
operator, as part of the command line which starts the program, can
specify that these logical devices are to be "redirected" to another

- libov.4-

Aztec C 1/0 Overview LIBRARY

device or file. Standard input is redirected by entering on the
command line, after the program name, the name of the file or device,
preceded by the character '<'. Standard output is redirected by
entering the name of the file or device, preceded by'>'.

For example, suppose the executable program cpy reads standard
input and writes it to standard output. Then the following command
will read lines from the keyboard and write them to the display:

cpy

The following will read from the keyboard and write it to the file
test file:

cpy > testfile

This will copy the file exmplfil to the console:

cpy <exmplfil

And this will copy exmplfil to testfile:

cpy <exmplfil >testfile

Aztec C will pass command line arguments to the user's program via
the user's function main(argc, argv). argc is an integer containing the
number of arguments plus one; argv is a pointer to a an array of
character pointers, each of which, except the first, points to a
command line argument. On some systems, the first array element
points to the command name; on others, it is a null pointer.
Information on your system's treatment of this pointer is presented in
this chapter's system dependent appendix.

For example, if the following command is entered:

prog argl arg2 arg3

the program prog will be activated and execution begins at the user's
function main. The first parameter to main is the integer 4. The second
parameter is a pointer to an array of four character pointers; on some
systems the first array element will point to the string "prog" and on
others it will be a null pointer. The second, third, and fourth array
elements will be pointers to the strings "argl", "arg2", and "arg3"
respectively.

The command line can contain both arguments to be passed to the
user's program and i/o redirection specifications. The i/o redirection
strings won't be passed to the user's program, and can appear anywhere
on the command line after the command name. For example, the
standard output of the "prog" program can be redirected to the file
outfile by any of the following commands; in each case the argc and
argv parameters to the main function of 'prog' are the same as if the
redirection specifier wasn't present

- libov.S-

LIBRARY 1/0 Overview

prog argl arg2 arg3 >outfile
prog >outfile argl arg2 arg3
prog argl >outfile arg2 arg3

1.2 File 1/0

Aztec C

A program can access files both sequentially and randomly, as
discussed in the following paragraphs.

1.21 Sequential 1/0

For sequential access, a program simply issues any of the various
read or write calls. The transfer will begin at the file's "current
position", and will leave the current position set to the byte following
the last byte transferred A file can be opened for read or write access;
in this case, its current position is initially the first byte in the file. A
file can also be opened for append access; in this case its current
position is initially the end of the file.

On systems which don't keep track of the last character written to a
file, it isn't always possible to correctly position a file to which data is
to be appended If this is a problem on your system, it's discussed in
the system dependent appendix to this chapter, which accompanies the
system dependent section of your manual.

1.22 Random 1/0

Two functions are provided which allow a program to set the
current position of an open file: jseek, for a file opened for standard
i/o; and !seek, for a file opened for unbuffered i/o.

A program accesses a file randomly by first modifying the file's
current position using one of the seek functions. Then the program
issues any of the various read and write calls, which sequentially access
the file.

A file can be positioned relative to its beginning, current position,
or end Positioning relative to the beginning and current position is
always correctly done. For systems which don't keep track of the last
character written to a file, positioning relative to the end of a file can't
always be correctly done. For information on this, see this chapter's
system dependent appendix.

1.23 Opening files

Opening files is somewhat system dependent the parameters to the
open functions are the same on the Aztec C packages for all systems,
but some system dependencies exist, to conform with the system
conventions. For example, the syntax of file names and the areas
searched for files differ from system to system.

For information on the opening of files on your system, see this
chapter's system dependent appendix.

- libov.6-

Aztec C 1/0 Overview LIBRARY

1.3 Device 1/0

Aztec C allows programs to access devices as well as files. Each
system has its own names for devices: for the names of devices on
your system, see this chapter's system dependent appendix.

1.3.1 Console 1/0

Console 1/0 can be performed in a variety of ways. There's a
default mode, and other modes can be selected by calling the function
ioctl. We'll briefly describe console 1/0 in this section; for more
details, see the Console l/0 section of this chapter and the system
dependent appendix to this chapter.

When the console is in default mode, console input is buffered and
is read from the keyboard a line at a time. Typed characters are echoed
to the screen and the operator can use the standard operating system
line editing facilities. A program doesn't have to read an entire line at
a time (although the system software does this when reading keyboard
input into it's internal buffer), but at most one line will be returned to
the program for a single read request

The other modes of console i/o allow a program to get characters
from the keyboard as they are typed, with or without their being
echoed to the display; to disable normal system line editing facilities;
and to terminate a read request if a key isn't depressed within a certain
interval.

Output to the console is always unbuffered: characters go directly
from a program to the display. The only choice concerns translation of
the newline character; by default, this is translated into a carriage
return, line feed sequence.

Optionally, this translation can be disabled

1.3.2 1/0 to Other Devices

On most systems, few options are available when writing to devices
other than the console. For a discussion of such options, if any, that
are available on your system, see this chapter's system dependent
appendix.

1.4 Mixing unbuffered and standard i/o calls

As mentioned above, a program generally accesses a file or device
using functions from one set of functions or the other, but not both.

However, there are functions which facilitate this dual access: if a
file or device is opened for standard i/o, the function fileno returns a
file descriptor which can be used for unbuffered access to the file or
device. If a file or device is open for unbuffered i/o, the function
jdopen will prepare it for standard i/o as well.

- libov.7-

LIBRARY 1/0 Overview Aztec C

Care is warranted when accessing devices and files with both
standard and unbuffered i/o functions.

- libov.8-

Aztec C Standard 1/0 Overview LIBRARY

2. Overview of Standard 1/0

The standard i/o functions are used by programs to access files and
devices. They are compatible with their UNIX counterparts, with few
exceptions, and are also described in chapter 8 of The C Programming
Language. The exceptions concern appending data to files and
positioning files relative to their end, and are discussed below.

These functions provide programs with convenient and efficient
access to files and devices. When accessing files, the functions buffer
the file data; that is, handle the blocking and deblocking of file data
Thus the user's program can concentrate on its own concerns.

Buffering of data to devices when using the standard ij o functions
is discussed below.

For programs which perform their own file buffering, another set
of functions are provided These are described in the section
UNBUFFERED I/0.

2.1 Opening files and devices

Before a program can access a file or device, it must be "opened",
and when processing on it is done it must be "closed".

An open device or file is called a "stream" and has associated with it
a pointer, called a "file pointer", to a structure of type FILE. This
identifies the file or device when standard i/o functions are called to
access it

There are two ways for a file or device to be opened for standard
i/o: first, the program can explicitly open it, by calling one of the
functions fopen, !reopen, or fdopen. In this case, the open function
returns the file pointer associated with the file or device. fopen just
opens the file or device. !reopen reopens an open stream to another
file or device; it's mainly used to change the file or device associated
with one of the logical devices standard output, standard input, or
standard error. fdopen opens for standard i/o a file or device already
opened for unbuffered i/o.

Alternatively, the file or device can be automatically opened as one
of the logical devices standard input, standard output, or standard
error. In this case, the file pointer is stdin, stdout, or stderr,
respectively. These symbols are defined in the header file stdio.h. See
the section entitled I/0 for more information on logical devices.

2.2 OO'iing streams

A file or device opened for standard i/o can be closed in two ways:
first, the program can explicitly close it by calling the function fclose.

Alternatively, when the program terminates, either by falling off
the end of the function main, or by calling the function exit, the
system will automatically close all open streams.

- libov.9-

LIBRARY Standard 1/0 Overview Aztec C

Letting the system automatically close open streams is error-prone:
data written to files using the standard ijo functions is buffered in
memory, and a buffer isn't written to the file until it's full or the file
is closed Most lik~ly, when a program finishes writing to a file, the
file's buffer will be partially full, with this information not having
been written to the file. If a program calls /close, this function will
write the partially filled buffer to the file and return an error code if
this couldn't be done. If the program lets the system automatically
close the file, the program won't know if an error occurred on this last
write operation.

23 Sequential 1/0

Files can be accessed sequentially and randomly. For sequential
access, simply issue repeated read or write calls; each call transfers data
beginning at the "current position" of the file, and updates the current
position to the byte following the last byte transferred When a file is
opened, its current position is set to zero, if opened for read or write
access, and to its end if opened for append

On systems which don't keep track of the last character written to a
file, such as CP/M and Apple I I DOS, not all files can be correctly
positioned for appending data. See the section entitled 1/0 for details.

24 Random 1/0

The function !seek allows a file to be accessed randomly, by
changing its current position. Positioning can be relative to the
beginning, current position, or end of the file.

For systems which don't keep track of the last character written to a
file, such as CP/M and Apple I I DOS, positioning relative to the end
of a file cannot always be correctly done. See the 1/0 overview section
for details.

2.5 Buffering

When the standard i/o functions are used to access a file, the i/o is
buffered Either a user-specified or dynamically- allocated buffer can
be used

The user's program specifies a buffer to be used for a file by calling
the function setbuf after the file has been opened but before the first
i/o request to it has been made.

If, when the first i/o request is made to a file, the user hasn't
specified the buffer to be used for the file, the system will
automatically allocate, by calling malloc, a buffer for it. When the file
is closed it's buffer will be freed, by calling free.

Dynamically allocated buffers are obtained from the one region of
memory (the heap), whether requested by the standard i/o functions
or by the user's program. For more information, see the overview

- libov.lO-

Aztec C Standard 1/0 Overview LIBRARY

section Dynamic Buffer Allocation.

The size of an i/o buffer differs from system to system. See this
chapter's system-dependent appendix for the size of this buffer on
your system.

A program which both accesses files using standard i/o functions
and has overlays has to take special steps to insure that an overlay
won't be loaded over a buffer dynamically allocated for file i/o. For
more information, see the section on overlay support in the Technical
Information chapter.

By default, output to the console using standard i/o functions is
unbuffered; all other device i/o using the standard ijo functions is
buffered Console input buffering can be disabled using the ioctl
function; see the overview section Console 1/0 for details.

2.6 Errors

There are three fields which may be set when an exceptional
condition occurs during stream i/o. Two of the fields ·are unique to
each stream (that is, each stream has its own pair). The other is a
global integer.

One of the fields associated with a stream is set if end of file is
detected on input from the stream; the other is set if an error occurs
during i/o to the stream. Once set for a stream, these flags remain set
until the stream is closed or the program calls the clearerr function for
the stream. The only exception to the last statement is that when
called, fseek will reset the end of file flag for a stream. A program can
check the status of the eof and error flags for a stream by calling the
functions feof and /error, respectively.

The other field which may be set is the global integer errno. By
convention, a system function which returns an error status as its value
can also set a code in errno which more fully defines the error. The
overview section Errors defines the values which may be set in errno.

If an error occurs when a stream is being accessed, a standard i/o
function returns EOF (-1) as its value, after setting a code in errno and
setting the stream's error flag.

If end of file is reached on an input stream, a standard i/o function
returns EOF after setting the stream's eof flag.

There are two techniques a program can use for detecting errors
during stream i/o. First, the program can check the result of each i/o
call. Second, the program can issue i/o calls and only periodically
check for errors (for example, check only after all i/o is completed).

On input, a program will generally check the result of each
operation.

- libov.ll -

LIBRARY Standard 1/0 Overview Aztec C

On output to a file, a program can use either error checking
technique; however, periodic checking by calling jerror is more
efficient. When characters are written to a file using the standard i/o
functions they are placed in a buffer, which is not written to disk until
it is full. If the buffer isn't full, the function will return good status. It
will only return bad status if the buffer was full and an error occurred
while writing it to disk Since the buffer size is 1024 bytes, most write
calls will return good status, and hence periodic checking for errors is
sufficient and most efficient.

Once a file opened for standard i/o is closed, !error can't be used to
determine if an error has occurred while writing to it. Hence ferror
should be called after all writing to the file is completed but before the
file is closed The file should be explicitly closed by fclose, and its
return value checked, rather than letting the system automatically close
it, to know positively whether an error has occurred while writing to
the file. The reason for this is that when the writing to the file is
completed, it's standard i/o buffer will probably be partly full. This
buffer will be written to the file when the file is closed, and fclose will
return an error status if this final write operation fails.

2 7 The standard i/o functions

The standard i/o functions can be grouped into two sets: those that
can access only the logical devices standard input, standard output, and
standard error; and all the rest.

Here are the standard ij o functions that can only access stdin,
stdout, and stderr. These are all ASCII functions; that is, they expect to
deal with text characters only.

getchar
gets
printf
puterr
putchar
puts
scanf

Get an ASCII character from stdin
Get a line of ASCII characters from stdin
Format data and send it to stdout
Send a character to stderr
Send a character to stdout
Send a character string to stdout
Get a line from stdin and convert it

Here are the rest of the standard i/o functions:

- libov.12-

Aztec C

agetc
aputc
fopen
fdopen

freopen
fclose
feof
ferror
file no
fflush
fgets
fprintf
fputs
fread
fscanf
fseek
ftell
fwrite
getc
getw
putc
putw
setbuf
ungetc

Standard 1/0 Overview

Get an ASCII character
Send an ASCII character
Open a file or device

LIBRARY

Open as a stream a file or device already open
for unbuffered i/o
Open an open stream to another file or device
Close an open stream
Check for end of file on a stream
Check for error on a stream
Get file descriptor associated with stream
Write stream's buffer
Get a line of ASCII characters
Format data and write it to a stream
Send a string of ASCII characters to a stream
Read binary data
Get data and convert it
Set current position within a file
Get current position
Write binary data
Get a binary character
Get two binary characters
Send a binary character
Send two binary characters
Specify buffer for stream
Push character back into stream

- libov.13-

LIBRARY Unbuffered 1/0 Overview Aztec C

3. Overview of Unbuffered 1/0

The unbuffered 1/0 functions are used to access files and devices.
They are compatible with their UNIX counterparts and are also
described in chapter 8 of The C Programming Language.

As their name implies, a program using these functions, with two
exceptions, communicates directly with files and devices; data doesn't
pass through system buffers. Some unbuffered I/0, however, is
buffered: when data is transferred to or from a file in blocks smaller
than a certain value, it is buffered temporarily. This value differs from
system to system, but is always less than or equal to 512 bytes. Also,
console input can be buffered, and is, unless specific actions are taken
by the user's program.

Programs which use the unbuffered i/o functions to access files
generally handle the blocking and deblocking of file data themselves.
Programs requiring file access but unwilling to perform the blocking
and deblocking can use the standard i/o functions; see the overview
section Standard l/0 for more information.

Here are the unbuffered i/o functions:

open Prepares a file or device for unbuffered i/o
creat Creates a file and opens it
close Concludes the i/o on an open file or device
read Read data from an open file or device
write Write data to an open file or device
!seek Change the current position of an open file
rename Renames a file
unlink Deletes a file
ioctl Change console if o mode
isatty Is an open file or device the console?

Before a program can access a file or device, it must be "opened", and
when processing on it is done, it must be "closed".

An open file or device has an integer known as a "file descriptor"
associated with it; this identifies the file or device when it's accessed

There are two ways for a file or device to be opened for unbuffered
i/o. First, it can explicitly open it, by calling the function open. In this
case, open returns the file descriptor to be used when accessing the file
or device.

Alternatively, the file or device can be automatically opened as one
of the logical devices standard input, standard output, or standard
error. In this case, the file descriptor is the integer value 0, I, or 2,
respectively. See the section entitled I/0 for more information on this.

An open file or device is closed by calling the function close. When
a program ends, any devices or files still opened for unbuffered i/o
will be closed

- libov.14-

Aztec C Unbuffered 1/0 Overview LIBRARY

If an error occurs during an unbuffered i/o operation, the function
returns -1 as its value and sets a code in the global integer errno. For
more information on error handling, see the section ERRORS.

The remainder of this section discusses unbuffered i/o to files and
devices.

3.1 File 1/0

Programs call the functions read and write to access a file; the
transfer begins at the "current position" of the file and proceeds until
the number of characters specified by the program have been
transferred

The current position of a file can be manipulated in various ways
by a program, allowing both sequential and random acccess to the file.
For sequential access, a program simply issues consecutive i/o
requests. After each operation, the current position of the file is set to
the character following the last one accessed

The function /seek provides random access to a file by setting the
current position to a specified character location.

/seek allows the current position of a file to be set relative to the
end of a file. For systems which don't keep track of the last character
written to a file, such positioning cannot always be correctly done. For
more information, see the section entitled 1/0.

open provides a mode, 0 APPEND, which causes the file being
opened to be positioned at its end This mode is supported on UNIX
Systems 3 and 5, but not UNIX version 7. As with !seek, the
positioning may not be correct for systems which don't keep track of
the last character written to a file.

3.2 Device 1/0

3.21 Unbuffered 1/0 to the Console

There are several options available when accessing the console,
which are discussed in detail in the Console 1/0 sections of this
chapter and of the system-dependent appendix to this chapter. Here
we just want to briefly discuss the line- or character-modes of console
1/0 as they relate to the unbuffered i/o functions.

Console input can be either line- or character-oriented With line
oriented input, characters are read from the console into an internal
buffer a line at a time, and returned to the program from this buffer.
Line buffering of console input is available even when using the so
called "unbuffered" i/o functions.

With character-oriented input, characters are read and returned to
the program when they are typed: no buffering of console input
occurs.

- libov.15-

LIBRARY Unbuffered 1/0 Overview Aztec C

3.22 Unbuffered 1/0 to Non-Console Devices

Unbuffered 1/0 to devices other than the console is truly
unbuffered

- libov.16-

Aztec C Console 1/0 Overview LIBRARY

4. Overview of Console 1/0

A program has control over several options relating to console i/o.
The primary option allows console input to be either line- or
character-oriented, as described below.

On most systems, a program can selectively enable and disable the
echoing of typed characters to the screen; this is called the ECHO
option. A program can also enable and disable the conversion of
carriage return to newline on input and of newline to carriage return
linefeed on output; this is called the CRMOD option.

On some systems, additional options are available. If your system
supports additional options, they are discussed in the system dependent
appendix to this chapter.

All the console i/o options have default settings, which allow a
program to easily access the console without having to set the options
itself. In the default mode, console i/o is line-oriented, with ECHO
and CRMOD enabled

A program can easily change the console i/o options, by calling the
function ioctL

Console i/o behaves the same on all systems when the console
options have their default settings. However, the behavior of console
i/o differs from system to system when the options are changed from
their default values. Thus, a program requiring machine independence
should either use the console in its default mode or be careful how it
sets the console options. In the paragraphs below, we will try to point
out system dependencies.

4.1 Line-oriented input

With line-oriented input, a program issuing a read request to the
console will wait until an entire line has been typed On some systems
a non-UNIX option (NODELA Y) is available that will prevent this
waiting. If this option is available on your system, it's discussed in the
system-dependent appendix to this chapter.

The program need not read an entire line at once; the line will be
internally buffered, and characters returned to the program from the
buffer, as requested When the program issues a read request to the
console and the buffer is empty, the program will wait until an entire
new line has been typed and stored in the internal buffer (again, on
some systems programs can disable this wait by setting the non-UNIX
NODELA Y option).

A single unbuffered read operation can return at most one line.

On most systems , selecting line-oriented console input forces the
ECHO option to be enabled On such systems the program still has
control over the CRMOD option. To find out if, on your system,

-libov.17-

LIBRARY Console 1/0 Overview Aztec C

line-oriented mode always has ECHO enabled, see the system
dependent appendix to this chapter.

4.2 Character-oriented input

The basic idea of character-oriented console input is that a program
can read characters from the console without having to wait for an
entire line to be entered

The behavior of character-oriented console input differs from
system to system, so programs requiring both machine independence
and character-oriented console input have to be careful in their use of
the console. However, it is possible to write such programs, although
they may not be able to take full advantage of the console i/o features
available for a particular system.

There are two varieties of character-oriented console input, named
CBREAK and RAW. Their primary difference is that with the console
in CBREAK mode, a program still has control over the other console
options, whereas with the console in RAW mode it doesn't. In RAW
mode, all other console options are reset: ECHO and CRMOD are
disabled

Thus, to some extent RAW mode is simply an abbreviation for
'CBREAK on, all other options ofr. However, there are some
differences on some systems, as noted below and in this chapter's
system-dependent appendix.

The system-dependent appendix to this chapter, which accompanies
your manual, presents information about character-oriented console
that is specific to your system.

4.21 Writing system-independent programs

To write system-independent programs that access the console in
character-oriented input mode, the console should be set in RAW
mode, and the program should read only a single character at a time
from the console. All the non-UNIX options that are supported by
some systems should be reset

The standard i/o functions all read just one character at a time
from the console, even when the calling program requests several
characters. Thus, programs requiring system independence and
character-oriented input can read the console using the standard i/o
functions.

Some systems require a program that wants to set console option to
first call ioctl to fetch the current console options, then modify them as
desired, and finally call ioctl to reset the new console options. The
systems that don't require this don't care if a program first fetches the
console options and then modifies them. Thus, a program requiring
system-independence and console i/o options other than the default
should fetch the current console options before modifying them.

- libov.l8-

Aztec C Console 1/0 Overview LIBRARY

4.3 Using ioctl

A program selects console 1/0 modes using the function ioctl. This
has the form:

#include <sgtty.h>

ioctl(fd, code, arg)
struct sgttyb *arg;

The header file sgtty.h defines symbolic values for the code
parameter (which tells ioctl what to do) and the structure sgttyb.

The parameter fd is a file descriptor associated with the console. On
UNIX, this parameter defines the file descriptor associated with the
device to which the ioctl call applies. Here, ioctl always applies to the
console.

The parameter code defines the action to be performed by ioctl. It
can have these values:

TIOCGETP

TIOCSETP

TIOCSETN

Fetch the console parameters and store them in
the structure pointed at by arg.
Set the console parameters according to the
structure pointed at by arg.
Equivalent to TIOCSETP.

The argument arg points to a structure named sgttyb that contains
the following fields:

int sg flags;
char sg erase;
char sg=kill;

The order of these fields is system-dependent.

The sg_jlags field is supported by all systems, while the other
fields are not supported by some systems. If these fields are supported
on your system, the system-dependent appendix to this chapter that
accompanies your manual says so, and describes them.

To set console options, a program should fetch the current state of
the sgtty fields, using ioctl's TIOCGETP option. Then it should
modify the fields to the appropriate values and call ioctl again, using
ioctl's TIOCSETP option.

4.4 The sgtty fields

4.4.1 The sg_fl~ field

sg_flags contains the following UNIX-compatible flags:

RAW Set RAW mode (turns off other options). By
default, RAW is disabled

CBREAK Return each character as soon as typed By
default, CBREAK is disabled

- libov.19-

LIBRARY Console 1/0 Overview Aztec C

ECHO Echo input characters to the display. By default,
ECHO is enabled

CRMOD Map CR to LF on input; convert LF to CR-LF
on output By default, CRMOD is enabled

On some systems, other flags are contained in sg_jlags. If your
system supports other flags, they're described in the system-dependent
appendix to this chapter that accompanies your manual.

More than one flag can be specified in a single call to ioctl; the
values are simply 'or'ed together. If the RAW option is selected, none
of the other options have any effect

When the console i/o options are set and RAW and CBREAK are
reset, the console is set in line-oriented input mode.

4.5 Examples

4.5.1 Console input using default mode

The following program copies characters from stdin to stdout The
console is in default mode, and assuming these streams haven't been
redirected by the operator, the program will read from the keyboard
and write to the display. In this mode, the operator can use the
operating system's line editing facilities, such as backspace, and
characters entered on the keyboard will be echoed to the display. The
characters entered won't be returned to the program until the operator
depresses carriage return.

#include <stdio.h>

main()
{

}

int c;
while ((c = getchar()) != EO F)

putchar(c);

4.5.2 Console input - RAW mode

In this example, a program opens the console for standard i/o, sets
the console in RAW mode, and goes into a loop, waiting for characters
to be read from the console and then processing them. The characters
typed by the operator aren't displayed unless the program itself
displays them. The input request won't terminate until a character is
received This example assumes that the console is named 'con:'; on
systems for which this is not the case, just substitute the appropriate
name.

-libov.20-

Aztec C Console 1/0 Overview

#include <stdio.h>
#include <sgtty.h>
main()
{

}

int c;
FILE *fp;
struct sgttyb stty;

if ((fp = fopen("con:", "r") == NULL){
printf("can't open the console\n");
exit();

}

ioctl(fileno(fp),TIOCGETP, &stty);

stty.sg flags 1= RAW;
ioctl(fileno(fp), TIOCSETP, &stty);
for(;;){

c = getc(fp);

}

4.5.3 Console input - console in CBREAK + ECHO mode

LIBRARY

This example modifies the previous program so that characters read
from the console are automatically echoed to the display. The program
accesses the console via the standard input device. It uses the function
isatty to verify that stdin is associated with the console; if it isn't, the
program reopens stdin to the console using the function /reopen.
Again, the console is assumed to be named con:.

#include <stdio.h>
#include <sgtty.h>
main()
{

}

int c;
struct sgttyb stty;

if (!isatty(stdin))
freopen("con:", "r", stdin);

ioctl(O, TIOCGETP, &stty);
stty.sg flags I= CBREAK I ECHO;
ioct1(0,TIOCSETP, &stty);
for(;;){

c = getchar();

}

- libov.21 -

LIBRARY Dynamic Buffer Alloc Aztec C

5. Overview of Dynamic Buffer Allocation

Several functions are provided for the dynamic allocation and
deallocation of· buffers from a section of memory called the 'heap'.
They are:

rnal/oc Allocates a buffer
calloc Allocates a buffer and initializes it to zeroes
real/oc Allocates more space to a previously allocated buffer
free Releases an allocated buffer for reuse

These standard UNIX functions are described in the System
Independent Functions section of this chapter.

In addition, on some systems the UNIX-compatible functions sbrk
and brk are provided that provide a more elementary means to allocate
heap space. The rnal/oc-type functions call sbrk to get heap space,
which they then manage.

On some systems, non-UNIX memory allocation functions are also
supported If such functions are supported on your system, they are
described in the system-dependent appendix to this chapter that
accompanies your manual.

Dynamic allocation of standard i/o buffers

Buffers used for standard i/o are dynamically allocated from the
heap unless specific actions are taken by the user's program. Standard
i/o calls to dynamically allocate and deallocate buffers can be
interspersed with those of the user's program.

Programs which perform standard i/o and which must have
absolute control of the heap can explicitly define the buffers to be used
by a standard i/o stream.

Where to go from here

For descriptions of the sbrk and brk functions and, when applicable,
non-UNIX memory allocation functions see the System Dependent
Functions chapter.

For a discussion of i/o buffer allocation, see the Standard I/0
section of the Library Functions Overviews chapter.

For more information on the heap, see the Program Organization
section of the Technical Information chapter.

-libov.22-

Aztec C Errors Overview LIBRARY

6. Overview of Error Processing

This section discusses error processing which relates to the global
integer ermo. This variable is modified by the standard i/o, unbuffered
i/o, and scientific (eg, sin, sqrt) functions as part of their error
processing.

The handling of floating point exceptions (overflow, underflow, and
division by zero) is discussed in the Tech Info chapter.

When a standard i/o, unbuffered i/o, or scientific function detects
an error, it sets a code in ermo which describes the error. If no error
occurs, the scientific functions don't modify ermo. If no error occurs,
the i/o functions may or may not modify ermo.

Also, when an error occurs,

* A standard i/o function returns -1 and sets an error flag for
the stream on which the error occurred;

* An unbuffered i/o function returns -1;

* A scientific function returns an arbitrary value.

When performing scientific calculations, a program can check errno
for errors as each function is called Alternatively, since errno is
modified only when an error occurs, errno can be checked only after a
sequence of operations; if it's non-zero, then an error has occurred at
some point in the sequence. This latter technique can only be used
when no i/o operations occur during the sequence of scientific
function calls.

Since errno may be modified by an i/o function even if an error
didn't occur, a program can't perform a sequence of ijo operations and
then check ermo afterwards to detect an error. Programs performing
unbuffered i/o must check the result of each i/o call for an error.

Programs performing standard i/o operations cannot, following a
sequence of standard i/o calls, check ermo to see if an error occurred.
However, associated with each open stream is an error flag. This flag is
set when an error occurs on the stream and remains set until the
stream is closed or the flag is explicitly reset. Thus a program can
perform a sequence of standard i/o operations on a stream and then
check the stream's error flag. For more details, see the standard i/o
overview section.

The following table lists the system-independent values which may
be placed in errno. These symbolic values are defined in the file
errno.h. Other, system-dependent, values may also be set in ermo
following an i/o operation; these are error codes returned by the
operating system. System dependent error codes are described in the
operating system manual for a particular system.

-libov.23-

LIBRARY Errors Overview Aztec C

The system-independent error codes and their meanings are:

error code
ENOENT
E2BIG
EBADF

ENOMEM
EEXIST
EINVAL
ENFILE
EM FILE
ENOTTY
EACCES
ERANGE
EDOM

meaning
File does not exist
Not used
Bad file descriptor - file is not open
or improper operation requested
Insufficient memory for requested operation
File already exists on creat request
Invalid argument
Exceeded maximum number of open files
Exceeded maximum number of file descriptors
Ioctl attempted on non-console
Invalid access request
Math function value can't be computed
Invalid argument to math function

- libov.24-

SYSTEM-INDEPENDENT FUNCTIONS

- lib.l -

FUNCTIONS Aztec C

Chapter Contents

System Independent Functions .. lib
Index ... 5
The functions .. 8

- lib.2-

Aztec C FUNCTIONS

System Independent Functions

This chapter describes in detail the functions which are UNIX
compatible and which are common to all Aztec C packages.

The chapter is divided into sections, each of which describes a group
of related functions. Each section has a name, and the sections are
ordered alphabetically by name. Following this introduction is a cross
reference which lists each function and the name of the section in
which it is described

A section is organized into the following subsections:

TITLE
Lists the name of the section, a phrase which is intended to
catagorize the functions described in the section, and one or
more letters in parentheses which specify the libraries
containing the section's functions.

The letters which may appear in parentheses and their
corresponding libraries are:

c
M

c.lib
m.lib

On some systems, the actual library name may be a variant on
the name given above. For example, on TRSDOS, the libraries
are named c/ lib and m/ lib.

With Apprentice C, the functions are all in the run-time system,
and not libraries.

SYNOPSIS
Indicates the types of arguments that the functions described in
the section require, and the values they return. For example, the
function atof converts character strings into double precision
numbers. It is listed in the synopsis as

double atof(s)
char *s;

This means that ato f() returns a value of type double and
requires as an argument a pointer to a character string. Since
atof returns a non-integer value, prior to use of the function it
must be declared:

double atof();

The notation

- lib.3-

FUNCTIONS Aztec C

#include "header.h"

at the beginning of a synopsis indicates that such a statement
should appear at the beginning of any program calling one of
the functions described in the section.

On Radio Shack systems, a header file can use either a period or
a slash to separate the filename from the extent. That is, the
include statement can be as listed above, or

#include "header /h"

DESCRIPTION
Describes the section's functions.

SEE AlSO
Lists relevant sections. A letter in parentheses may follow a
section name. This specifies where the section is located: no
letter means that the section is in the current chapter; '0' means
that it's in the Functions Overview chapter; 'S' means that it's in
the System Dependent Functions chapter.

DIAGNOSTICS
Describes the error codes that the section's functions may
return. The section ERRORS in the Functions Overview chapter
presents an overview of error processing.

EXAMPLES
Gives examples on use of the section's functions.

- lib.4 -

Index to System Independent Functions

function page description

acos SIN .. compute arccosine
agetc GETC get ASCII char from a stream
aputc PUTC put ASCII char to a stream
asin SIN .. compute arcsine
atan SIN .. compute arctangent
atan2 SIN another arctangent function
atof A TOF convert char string to a double
atoi ATOF convert char string to an int
atol ATOF convert char string to a long
calloc MALLOC ... allocate a buffer
ceil FLOOR get smallest integer not less than x
clearerr FERROR clear error flags on a stream
close CLOSE close of unbuffered file/device
cos SIN ... compute cosine
cosh SINH compute hyperbolic cosine
cotan SIN ... compute cotangent
creat CREA T create a file & open for unbuffered ij o
exp EXP .. compute exponential
fabs FLOOR .. compute absolute value
fclose FCLOSE ... close i/o stream
fdopen FOPEN open file descriptor as an i/o stream
feof FERROR check for eof on an i/o stream
ferror FERROR check for error on an i/o stream
fflush FCLOSE .. flush an ij o stream
fgets GETS get a line from an i/o stream
file no FERROR get file descriptor for i/o stream
floor FLOOR get largest int not greater than x
fopen FOPEN ... open ij o stream
format PRlNTF formatting utility for print!
fprintf PRlNTF format string & send to i/o stream
fputs PUTS put char string to i/o stream
fread FREAD read binary data from i/o stream
free MALLOC ... release buffer
freopen FOPEN .. reopen i/o stream
frexp FREXP get components of a double
fscanf SCANF input string from i/o stream & convert
fseek FSEEK .. position ijo stream
ftell FSEEK determine position in i/o stream
ftoa ATOF convert float/double to char string

- lib.5 -

fwrite FREAD write binary data to i/o stream
getc GETC get binary char from i/o stream
getchar GETC get ASCII char from stdin
gets GETS get ASCII line from stdin
getw GETW get ASCII word from stdin
index SlRING ... find char in string
ioctl IOCTL .. set mode of device
isalpha, etc. CTYPE char classification functions
isatty IOCTL ... is this a console?
ldexp FREXP .. build double
log EXP .. compute natural logarithm
loglO EXP ... compute base-10 log
longjmp SETJMP ... non-local goto
!seek LSEEK position unbuffered i/o file
malloc MALLOC .. allocate buffer
movmem MOVMEM copy a block of memory
modf FREXP get components of double
open OPEN open file/device for unbuffered i/o
pow EXP ... compute x**y
printf PRINTF format data and print on stdout
putc PUTC put binary char to i/o stream
putchar PUTC ... put ASCII char to stdout
puterr PUTC ... put ASCII char to stderr
puts PUTS put ASCII string to stdout
putw PUTC put ASCII word to stdout
qsort QSORT .. Quick sort
ran RAN ... compute random number
read READ read unbuffered file/device
realloc MALLOC .. reallocate buffer
rename RENAME ... rename file
rindex SlRING ... find char in string
scanf SCANF input string from stdin & convert
setbuf SETBUF set buffer for i/o stream
setjmp SETJMP .. longjmp partner
setmem MOVMEM set memory to specified byte
sin SIN ... compute sine
sinh SINH .. compute hyperbolic sine
sprintf PRINTF format string into buffer
sqrt EXP ... compute square root
sscanf SCANF convert string from buffer
strcat SlRING concatenate two strings
strcmp SlRING .. compare two strings
strcpy SlRING ... copy char string
strlen SlRING get length of char string
strncat SlRING .. concatenate strings
strncmp SlRING .. compare strings
strncpy SlRING .. copy string
swapmem MOVMEM swap two blocks of memory

- lib.6-

tan SIN ... compute tangent
tanh SINH compute hyperbolic tangent
tolower TOUPPER convert upper case char to lower
toupper TOUPPER convert lower case char to upper
ungetc UNGETC return char to ijo stream
unlink UNLINK ... delete file
write WRITE unbuffered write of binary data

- lib.7 -

ATOF(C,M) ATOF

NAME
atof, atoi, atol - convert ASCII to numbers
ftoa - convert floating point to ASCII

SYNOPSIS
double atof(cp)
char *cp;

atoi(cp)
char *cp;

long atol(cp)
char *cp;

ftoa(val, buf, precision, type)
double val;
char *buf;
int precision, type;

DESCRIPTION
atof, atoi, and atol convert a string of text characters pointed at
by the argument cp to double, integer, and long representations,
respectively.

atof recognizes a string containing leading blanks and tabs,
which it skips, then an optional sign, then a string of digits
optionally containing a decimal point, then an optional 'e' or 'E'
followed by an optionally signed integer.

atoi and atol recognize a string containing leading blanks and
tabs, which are ignored, then an optional sign, then a string of
digits.

ftoa converts a double precision floating point number to ASCII.
val is the number to be converted and buf points to the buffer
where the ASCII string will be placed precision specifies the
number of digits to the right of the decimal point type specifies
the format 0 for "E" format, I for "F' format, 2 for "G" format.

atof and ftoa are in the library m.lib; the other functions are in
c. lib.

- lib.S-

CLOSE (C) CLOSE

NAME
close - close a device or file

SYNOPSIS
close(fd)
int fd;

DESCRIP110N
close closes a device or disk file which is opened for unbuffered
ijo.

The parameter fd is the file descriptor associated with the file
or device. If the device or file was explicitly opened by the
program by calling open or creat, fd is the file descriptor
returned by open or creat.

close returns 0 as its value if successful.

SEE ALSO
Unbuffered I/0 (0), Errors (0)

DIAGNOSTICS
If close fails, it returns -1 and sets an error code in the global
integer errno.

- lib.9-

CREAT (C) CREAT

NAME
creat - create a new file

SYNOPSIS
creat(name, pmode)
char *name;
int pmode;

DESCRIPTION
creal creates a file and opens it for unbuffered. write-only
access. If the file already exists, it is truncated so that nothing is
in it (this is done by erasing and then creating the file).

creal returns as its value an integer called a "file descriptor".
Whenever a call is made to one of the unbuffered i/o functions
to access the file, its file descriptor must be included in the
function's parameters.

name is a pointer to a character string which is the name of the
device or file to be opened See the 1/0 overview section for
details.

For most systems, pmode is optional: if specified. it's ignored It
should be included. however, for programs for which UNIX
compatibility is required. since the UNIX creat function
requires it In this case, pmode should have the octal value 0666.

For some systems, pmode is required and has a special meaning.
If it is required for your system, the System Dependent
Functions chapter will contain a description of the creal
function, which will define the meaning.

SEE AlSO
Unbuffered I/0 (0), Errors (0)

DIAGNOSTICS
If creal fails, it returns -1 as its value and sets a code in the
global integer errno.

- lib.lO -

CTYPE (C) CTYPE

NAME
isalpha, isupper, islower, isdigit, isalnum, isspace,
ispunct, isprint, iscntrl, isascii
- character classification functions

SYNOPSIS
#include "ctype.h"

isalpha(c)

DESCRIPTION
These macros classify ASCII-coded integer values by table
lookup, returning nonzero if the integer is in the catagory, zero
otherwise. isascii is defined for all integer values. The others are
defined only when isascii is true and on the single non-ASCII
value EOF (-1).

isalpha
isupper
is lower
isdigit
isalnum
iss pace

ispunct
is print

iscntrl

is ascii

cis a letter
cis an upper case letter
c is a lower case letter
cis a digit
c is an alphanumeric character
c is a space, tab, carriage return, newline, or
formfeed
cis a punctuation character
c is a printing character, valued Ox20 (space)
through Ox7e (tilde)
c is a delete character (Oxff) or ordinary control
character (value less than Ox20)
cis an ASCII character, code less than OxlOO

- lib.ll -

EXP (M) EXP

NAME
exponential, logarithm, power, square root functions:
exp, log, logl 0, pow, sqrt

SYNOPSIS
#include <math.h>

double exp(x)
double x;

double log(x)
double x;

double loglO(x)
double x;

double pow(x, y)
double x,y;

double sqrt(x)
double x;

DESCRIPTION
exp returns the exponential function of x.

log returns the natural logarithm of x; loglO returns the base 10
logarithm.

pow returns x ** y (x to the y-th power).

sqrt returns the square root of x.

SEE AlSO
Errors (0)

DIAGNOSTICS
If a function can't perform the computation, it sets an error
code in the global integer errno and returns an arbitrary value;
otherwise it returns the computed value without modifying
errno. The symbolic values which a function can place in errno
are EDOM, signifying that the argument was invalid, and
ERANGE, meaning that the value of the function couldn't be
computed These codes are defined in the file errno.h.

The following table lists, for each function, the error codes that
can be returned, the function value for that error, and the
meaning of the error. The symbolic values are defined in the
file math.h.

- lib.12-

EXP (M) EXP

~~ctionT-errm_l_]li_l ___ ~ani;\ __ _
1
1

exp 1
1

ERANGE I H E 1
1

x > LOOHOG
" ERANGE I 0.0 x < LOOTINY

I tog I EDOM I -HUGE I x <- 0 I I I I - I
1

togl0
1

EDOM
1

-HUGE
1

x <= 0
1

1 pow 1 EDOM 1 -HUGE 1 x < 0, x=y=O 1
1 " 1 ERANGE 1 HUGE 1 y*log(x)>LOGHUGE 1
I " I ERANGE I 0.0 1 y*log(x)<LOGTINY 1
I sqrt I EDOM I 0.0 I x < 0.0 1

- lib.13-

FCLOSE (C)

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
#include "stdio.h"

fclose(stream)
FILE *stream;

fflush(stream)
FILE *stream;

DESCRIPTION

FCLOSE

/close informs the system that the user's program has completed
its buffered i/o operations on a device or file which it had
previously opened (by calling fopen). /close releases the control
blocks and buffers which it had allocated to the device or file.
Also, when a file is being closed, /close writes any internally
buffered information to the file.

/close is called automatically by exit.

!flush causes any buffered information for the named output
stream to be written to that file. The stream remains open.

If /close or !flush is successful, it returns 0 as its value.

SEE ALSO
Standard I/0 (0)

DIAGNOSTICS
If the operation fails, -1 is returned, and an error code is set in
the global integer errno.

-lib.14-

FERROR (C) FERROR

NAME
feof, ferror, clearerr, fileno - stream status inquiries

SYNOPSIS
#include "stdio.h"

feof(stream)
FILE *stream;

f error(stream)
FILE *stream;

clearerr(stream)
FILE *stream;

fileno(stream)
FILE *stream;

DESCRIP110N
feof returns non-zero when end-of-file is reached on the
specified input stream, and zero otherwise.

ferror returns non-zero when an error has occurred on the
specified stream, and zero otherwise. Unless cleared by clearerr,
the error indication remains set until the stream is closed

clearerr resets an error indication on the specified stream.

fileno returns the integer file descriptor associated with the
stream.

These functions are defined as macros in the file stdio.h.

SEE ALSO
Standard 1/0 (0)

- lib.15-

FLOOR (M)

NAME
fabs, floor, ceil - absolute value, floor, ceiling routines

SYNOPSIS
#include <math.h>

double floor(x)
double x;

double ceil(x)
double x;

double fabs(x)
double x;

DESCRIPTION
jabs returns the absolute value of x.

floor returns the largest integer not greater than x.

ceil returns the smallest integer not less than x.

- lib.16-

FLOOR

FOPEN (C) FOP EN

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include "stdio.h"

FILE *fopen(filename, mode)
char *filename, *mode;

FILE *freopen(filename, mode, stream)
char *filename, *mode;
FILE *stream;

FILE *fdopen(fd, mode)
char *mode;

DESCRIPTION
These functions prepare a device or disk file for access by the
standard i/o functions; this is called "opening" the device or file.
A file or device which has been opened by one of these
functions is called a "stream".

If the device or file is successfully opened, these functions
return a pointer, called a "file pointer" to a structure of type
FILE. This pointer is included in the list of parameters to
buffered i/o functions, such as getc or putc, which the user's
program calls to access the stream.

/open is the most basic of these functions: it simply opens the
device or file specified by the filename parameter for access
specified by the mode parameter. These parameters are
described below.

/reopen substitutes the named device or file for the device or
file which was previously associated with the specified stream. It
closes the device or file which was originally associated with the
stream and returns stream as its value. It is typically used to
associate devices and files with the preopened streams stdin,
stdout, and stderr.

fdopen opens a device or file for buffered i/o which has been
previously opened by one of the unbuffered open functions
open and creal. It returns as it's value a FILE pointer.

fdopen is passed the file descriptor which was returned when the
device or file was opened by open or creal. It's also passed the
mode parameter specifying the type of access desired mode must
agree with the mode of the open file.

The parameter filename is a pointer to a character string which
is the name of the device or file to be opened For details, see
the 1/0 overview section.

- lib.17-

FOPEN (C) FOP EN

mode points to a character string which specifies how the user's
program intends to access the stream. The choices are as follows:

mode meaning

r Open for reading only. If a file is opened, it is
positioned at the first character in it. If the file
or device does not exist, NULL is returned

w Open for writing only. If a file is opened
which already exists, it is truncated to zero
length. If the file does not exist, it is created

a Open for appending. The calling program is
granted write-only access to the stream. The
current file position is the character after the
last character in the file. If the file does not
exist, it is created

x Open for writing. The file must not previously
exist. This option is not supported by Unix.

r+ Open for reading and writing. Same as "r", but
the stream may also be written to.

w+ Open for writing and reading. Same as "w'', but
the stream may also be read; different from "r+"
in the creation of a new file and loss of any
previous one.

a+ Open for appending and reading. Same as "a",
but the stream may also be read; different from
"r+" in file positioning and file creation.

x+ Open for writing and reading. Same as "x" but
the file can also be read

On systems which don't keep track of the last character in a file
(for example CP/M and Apple DOS), not all files can be
correctly positioned when opened in append mode. See the I/0
overview section for details.

SEE AlSO
I/0 (0), Standard I/0 (0)

DIAGNOSTICS
If the file or device cannot be opened, NULL is returned and an
error code is set in the global integer errno.

EXAMPLES
The following example demonstrates how fopen can be used in a
program.

- lib.18-

FOPEN (C)

#include "stdio.h"

main(argc,argv)
char **argv;
{

FILE *fopen(), *fp;

if ((fp = fopen(argv[1], argv[2])) == NULL) {
printf("You asked me to open %s",argv[1]);
printf("in the %s mode", argv[2]);
printf("but I can't!\n");

} else
printf("%s is open\n", argv[l]);

Here is a program which uses !reopen:

#include "stdio.h"
main()
{

}

FILE *fp;
fp = freopen("dskfile", "w+", stdout);
printf("This message is going to dskfile\n");

Here is a program which uses fdopen:

#include "stdio.h"

FOP EN

dopen it(fd)
int fd;-!* value returned by previous call to open *I
{

}

FILE *fp;

if ((fp = fdopen(fd, "r+")) == NULL)
printf("can't open file for r+\n");

else
return(fp);

- lib.19 -

FREAD (C) FREAD

NAME
fread, fwrite- buffered binary input/output

SYNOPSIS
#include "stdio.h"

int fread(buffer, size, count, stream)
char *buffer;
int size, count;
FILE *stream;

int fwrite(buffer, size, count, stream)
char *buffer;
int size, count;
FILE *stream;

DESCRIPTION
fread performs a buffered input operation and fwrite a buffered
write operation to the open stream specified by the parameter
stream.

buffer is the address of the user's buffer which will be used for
the operation.

The function reads or writes count items, each containing size
bytes, from or to the stream.

fread and fwrite perform i/o using the functions getc and putc;
thus, no translations occur on the data being transferred

The function returns as its value the number of items actually
read or written.

SEE ALSO
Standard 1/0 (0), Errors (0), fopen, ferror

DIAGNOSTICS
fread and fwrite return 0 upon end of file or error. The
functions feof and ferror can be used to distinguish between the
two. In case of an error, the global integer ermo contains a code
defining the error.

EXAMPLE
This is the code for reading ten integers from file 1 and writing
them again to file 2. It includes a simple check that there are
enough two-byte items in the first file:

- lib.20-

FREAD (C)

#include "stdio.h"

main()
{

}

ALE *fpl, *fp2 *fopen();
char lbufLx.>'-J
int size = 2, count= 10;

fpl = fopen("file I ","r");
fp2 = fopen("file2","w'');
if (fread(buf, size, count, fpl) != count)

printf("Not enough integers in file 1 \n");
fwrite(buf, size, count, fp2);

- lib.21 -

FREAD

FREXP (M) FREXP

NAME
frexp, ldexp, modf - build and unbuild real numbers

SYNOPSIS
#include <math.h>

double frexp(value, eptr)
double value;
int *eptr;

double ldexp(value, exp)
double value;

double modf(value, iptr)
double value, *iptr;

DESCRIPTION
Given value, jrexp computes integers x and n such that
value=x*2**n. x is returned as the value of frexp, and n is
stored in the int field pointed at by e ptr.

ldexp returns the double quantity value*2**exp.

mod! returns as its value the positive fractional part of value and
stores the integer part in the double field pointed at by iptr.

- lib.22-

FSEEK (C) FSEEK

NAME
fseek, ftell - reposition a stream

SYNOPSIS
#include "stdio.h"

int fseek(stream, offset, origin)
FILE *stream;
long offset;
int origin;

long ftell(stream)
FILE *stream;

DESCRIPTION
jseek sets the "current position" of a file which has been opened
for buffered i/o. The current position is the byte location at
which the next input or output operation will begin.

stream is the stream identifier associated with the file, and was
returned by fopen when the file was opened

offset and origin together specify the current position: the new
position is at the signed distance offset bytes from the
beginning, current position, or end of the file, depending on
whether origin is 0, 1, or 2, respectively.

offset can be positive or negative, to position after or before
the specified origin, respectively, with the limitation that you
can't seek before the beginning of the file.

For some operating systems (for example, CP/M and Apple
DOS) a file may not be able to be correctly positioned relative
to its end See the overview sections I/0 and STANDARD I/0
for details.

If !seek is successful, it will return zero.

!tell returns the number of bytes from the beginning to the
current position of the file associated with stream.

SEE ALSO
Standard I/0 (0), 1/0 (0), lseek

DIAGNOSTICS
jseek will return -1 for improper seeks. In this case, an error
code is set in the global integer errno.

EXAMPLE
The following routine is equivalent to opening a file in "a+"
mode:

- lib.23 -

FSEEK (C)

a plus(filename)
char *filename;
{

}

ALE *fp, *fopen();

if ((fp = fopen(filename, r+)) ==NULL)
fp = fopen(filename, w+);
fseek(fp, OL, 2); !* position 1 byte past

last character *I

FSEEK

To set the current position back 5 characters before the present
current position, the following call can be used:

fseek(fp, -5L, 1)

- lib.24-

GETC (C) GETC

NAME
getc, agetc, getchar, getw

SYNOPSIS
#include "stdio.h"

int getc(stream)
FILE •stream;

int agetc(stream)
FILE •stream;

int getchar()

int getw(stream)
FILE •stream;

DESCRIPTION

/* non-Unix function • I

getc returns the next character from the specified input stream.

agetc is used to access files of text. It generally behaves like getc
and returns the next character from the named input stream. It
differs from getc in the following ways:

* It translates end-of-line sequences (eg, carriage return
on Apple DOS; carriage return-line feed on CP/M) to a
single newline ('\ \n') character.

* It translates an end-of-file sequence (eg, a null
character on Apple DOS; a control-z character on
CP/M) to EOF;

* It ignores null characters (' ') on all systems except
Apple DOS;

* On some systems, the most significant bit of each
character returned is set to zero.

agetc is not a UNIX function. It is, however, provided with all
Aztec C packages, and provides a convenient, system
independent way for programs to read text.

getchar returns text characters from the standard input stream
(stdin). It is implemented as the call agetc(stdin).

getw returns the next word from the specified input stream. It
returns EOF (-1) upon end-of-file or error, but since that is a
good integer value, jeoj and jerror should be used to check the
success of getw. It assumes no special alignment in the file.

SEE ALSO
I/0 (0), Standard I/0 (0), fopen, fclose

DIAGNOSTICS
These functions return EOF (-1) at end of file or if an error
occurs. The functions jeo f and ferror can be used to distinguish
the two. In the latter case, an error code is set in the global

- lib.25-

GETC (C) GETC

integer errno.

- lib.26 -

GETS (C) GETS

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include "stdio.h"

char •gets(s)
char •s;

char *fgets(s, n, stream)
char •s;
FILE •stream;

DESCRIPTION
gets reads a string of characters from the standard input stream,
stdin, into the buffer pointed by s. The input operation
terminates when either a newline character (\ \n) or end of file
is encountered

fgets reads characters from the specified input stream into the
buffer pointer at by s until either (1) n-1 characters have been
read, (2) a newline character (\ \n) is read, or (3) end of file or
an error is detected on the stream.

Both functions return s, except as noted below.

gets and /gets differ in their handling of the newline character:
gets doesn't put it in the caller's buffer, while fgets does. This is
the behavior of these functions under UNIX

These functions get characters using agetc; thus they can only be
used to get characters from devices and files which contain text
characters.

SEE ALSO
I/0 (0), Standard I/0 (0), ferror

DIAGNOSTICS
gets and fgets return the pointer NULL (0) upon reaching end
of file or detecting an error. The functions feof and ferror can
be used to distinguish the two. In the latter case, an error code
is placed in the global integer errno.

- lib.27-

IOCTL (C)

NAME
ioctl, isatty- device i/o utilities

SYNOPSIS
#include "sgtty.h"

ioctl(fd, cmd, stty)
struct sgttyb •stty;

isatty(fd)

DESCRIPTION
ioctl sets and determines the mode of the console.

IOCTL

For more details on ioctl, see the overview section on console
I/0.

isatty returns non-zero if the file descriptor fd is associated with
the console, and zero otherwise.

SEE ALSO
Console I/0 (0)

- lib.28-

LSEEK (C) LSEEK

NAME
lseek - change current position within file

SYNOPSIS
long int lseek(fd, offset, origin)
int fd, origin;
long offset;

DESCRIPTION
/seek sets the current position of a file which has been opened
for unbuffered i/o. This position determines where the next
character will be read or written.

fd is the file descriptor associated with the file.

The current position is set to the location specified by the offset
and origin parameters, as follows:

* If origin is 0, the current position is set to offset bytes
from the beginning of the file.

* If origin is I, the current position is set to the current
position plus offset.

* If origin is 2, the current position is set to the end of the
file plus offset.

The offset can be positive or negative, to position after or
before the specified origin, respectively.

Positioning of a file relative to its end (that is, calling /seek with
origin set to 2) cannot always be correctly done on all systems
(for example, CP/M and Apple DOS). See the section entitled
I/0 for details.

If /seek is successful, it will return the new position in the file
(in bytes from the beginning of the file).

SEE ALSO
Unbuffered I/0 (0), I/0 (0)

DIAGNOSTICS
If /seek fails, it will return -1 as its value and set an error code
in the global integer errno. errno is set to EBADF if the file
descriptor is invalid It will be set to EINVAL if the offset
parameter is invalid or if the requested position is before the
beginning of the file.

EXAMPLES
1. To seek to the beginning of a file:

lseek(fd, OL, 0);

/seek will return the value zero (0) since the current position in
the file is character (or byte) number zero.

- lib.29-

LSEEK (C) LSEEK

2. To seek to the character following the last character in the
file:

pos = lseek(fd, OL, 2);

The variable pos will contain the current position of the end of
file, plus one.

3. To seek backward five bytes:

lseek(fd, -5L. I);

The third parameter, I, sets the origin at the current position in
the file. The offset is -5. The new position will be the origin
plus the offset So the effect of this call is to move backward a
total of five characters.

4. To skip five characters when reading in a file:

read(fd, buf, count);
lseek(fd, 5L, I);
read(fd, buf, count);

- lib.30-

MALLOC (C) MALLOC

NAME
malloc, calloc, realloc, free - memory allocation

SYNOPSIS
char *malloc(size)
unsigned size;

char *calloc(nelem, elemsize)
unsigned nelem, elemsize;

char *realloc(ptr, size)
char *ptr;
unsigned size;

free(ptr)
char *ptr;

DESCRIPTION
These functions are used to allocate memory from the "heap",
that is, the section of memory available for dynamic storage
allocation.

malloc allocates a block of size bytes, and returns a pointer to it.

calloc allocates a single block of memory which can contain
nelem elements, each elemsize bytes big, and returns a pointer to
the beginning of the block Thus, the allocated block will contain
(nelem * elemsize) bytes. The block is initialized to zeroes.

realloc changes the size of the block pointed at by ptr to size
bytes, returning a pointer to the block If necessary, a new block
will be allocated of the requested size, and the data from the
original block moved into it. The block passed to realloc can
have been freed, provided that no intervening calls to calloc,
malloc, or realloc have been made.

free deallocates a block of memory which was previously
allocated by malloc, calloc, or realloc; this space is then available
for reallocation. The argument ptr to free is a pointer to the
block

malloc and free maintain a circular list of free blocks. When
called, malloc searches this list beginning with the last block
freed or allocated coalescing adjacent free blocks as it searches.
It allocates a buffer from the first large enough free block that it
encounters. If this search fails, it calls sbrk to get more memory
for use by these functions.

SEE ALSO
Memory Usage (0), break (S)

DIAGNOSTICS
malloc, calloc and realloc return a null pointer (0) if there is no
available block of memory.

- lib.31 -

MALLOC (C) MALLOC

free returns -1 if it's passed an invalid pointer.

- lib.32-

MOVMEM(C) MOVMEM

NAME
movmem, setmem, swapmem

SYNOPSIS
movmem(src, dest, length)
char *src, *dest;
int length;

setmem(area, length, value)
char *area;

swapmem(sl, s2, len)
char *sl, *s2;

DESCRIPTION

I* non-Unix function *I

I* non-Unix function *I

/* non-Unix function *I

nwvmem copies length characters from the block of memory
pointed at by src to that pointed at by dest.

nwvmem copies in such a way that the resulting block of
characters at dest equals the original block at src.

setmem sets the character value in each byte of the block of
memory which begins at area and continues for length bytes.

swapmem swaps the blocks of memory pointed at by sl and s2.
The blocks are len bytes long.

- lib.33-

OPEN (C) OPEN

NAME
open

SYNOPSIS
#include "fcntl.h"

open(name, mode) /* calling sequence on most systems* I
char *name;

/* calling sequence on some systems (see below): • I
open(name, mode, param3)
char •name;

DESCRIPTION
open opens a device or file for unbuffered i/o. It returns an
integer value called a file descriptor which is used to identify
the file or device in subsequent calls to unbuffered i/o
functions.

name is a pointer to a character string which is the name of the
device or file to be opened For details, see the overview section
I/0.

mode specifies how the user's program intends to access the file.
The choices are as follows:

mode
0 RDONLY
0-WRONLY
0-RDWR
0-CREAT
0-TRUNC
0-EXCL

0 APPEND

meaning
read only
write only
read and write
Create file, then open it
Truncate file, then open it
Cause open to fail if file already exists;
used with 0 CREA T
Position filefor appending data

These open modes are integer constants defined in the files
fcntl.h. Although the true values of these constants can be used
in a given call to open, use of the symbolic names ensures
compatibility with UNIX and other systems.

The calling program must specify the type of access desired by
including exactly one of 0 RDONL Y, 0 WRONL Y, and
0 RDWR in the mode parameter. The three remaining values
are optional They may be included by adding them to the mode
parameter, as in the examples below.

By default, the open will fail if the file to be opened does not
exist. To cause the file to be created when it does not already
exist, specify the 0 CREA T option. If 0 EXCL is given in
addition to 0 CREA T, the open will failif the file already
exists; otherwise, the file is created

-Iib.34-

OPEN (C) OPEN

If the 0 TRUNC option is specified, the file will be truncated
so that nothing is in it. The truncation is performed by simply
erasing the file, if it exists, and then creating it So it is not an
error to use this option when the file does not exist

Note that when 0 _ TRUNC is used, 0 _ CREA T is not needed.

If 0 APPEND is specified, the current position for the file
(that1s, the position at which the next data transfer will begin)
is set to the end of the file. For systems which don't keep track
of the last character written to a file (for example, CP/M and
Apple DOS), this positioning cannot always be correctly done.
See the I/0 overview section for details. Also, this option is not
supported by UNIX

param3 is not needed or used on many systems. If it is needed
for your system, the System Dependent Library Functions
chapter will contain a description of the open function, which
will define this parameter.

If open does not detect an error, it returns an integer called a
"file descriptor." This value is used to identify the open file
during unbuffered i/o operations. The file descriptor is very
different from the file pointer which is returned by fopen for
use with buffered i/o functions.

SEE ALSO
I/0 (0), Unbuffered 1/0 (0), Errors (0)

DIAGNaiTICS
If open encounters an error, it returns -1 and sets the global
integer errno to a symbolic value which identifies the error.

EXAMPLES
1. To open the file, testfile, for read-only access:

fd = open("testfile", 0 _RDONL Y);

If testfile does not exist open will just return -1 and set errno to
ENOENT.

2. To open the file, sub1, for read-write access:

fd = open("sub1", O_RDWR+O_CREAT);

If the file does not exist, it will be created and then opened

3. The following program opens a file whose name is given on
the command line. The file must not already exist.

- lib.35-

OPEN (C)

main(argc, argv)
char **argv;
{

int fd;

OPEN

fd = open(*++argv, 0 WRONL Y +0 CREA T +0 EXC
if(fd=-1) { - - -

}

if (errno == EEXIST}
printf("file already exists\n");
else if (errno == ENOENT}

printf("unable to open file\n");
else

printf("open error\n");

- lib.36-

PRINTF (C, M) PRINTF

NAME
printf, fprintf, sprintf, format
- formatted output conversion functions

SYNOPSIS
#include "stdio.h"

printf(fmt [,arg] ..•)
char *fmt;

fprintf(stream, fmt [,arg] ...)
FILE *stream;
char *fmt;

sprintf(buffer, fmt [,arg] ...)
char *buffer, *fmt;

format(func, fmt, argptr)
int (*func)();
char *fmt;
unsigned *argptr;

DESCRIPTION
These functions convert and format their arguments (arg or
argptr) according to the format specification fmt. They differ in
what they do with the formatted result

print! outputs the result to the standard output stream,
stdout;

fprintf outputs the result to the stream specified in its first
argument, stream;

sprint! places the result in the buffer pointed at by its first
argument, buffer, and terminates the result with the null
character, ' '.

format calls the function june with each character of the result.
In fact, printf, fprintf, and sprint! call format with each character
that they generate.

These functions are in both c.lib and m.lib, the difference being
that the c.lib versions don't support floating point conversions.
Hence, if floating point conversion is required, the m.lib
versions must be used If floating point conversion isn't
required, either version can be used To use m.lib's version, m.lib
must be specified before c.lib at the time the program is linked

The character string pointed at by the fmt parameter, which
directs the print functions, contains two types of items: ordinary
characters, which are simply output, and conversion
specifications, each of which causes the conversion and output
of the next successive arg.

- lib.37-

PRINTF (C, M) PRINTF

A conversion specification begins with the character % and
continues with:

* An optional minus sign (-) which specifies left adjustment
of the converted value in the output field;

* An optional digit string specifying the 'field width' for the
conversion. If the converted value has fewer characters
than this, enough blank characters will be output to make
the total number of characters output equals the field
width. If the converted value has more characters than the
field width, it will be truncated The blanks are output
before or after the value, depending on the presence or
absence of the left- adjustment indicator. If the field width
digits have a leading 0, 0 is used as a pad character rather
than blank.

* An optional period, '.', which separates the field width
from the following field;

* An optional digit string specifying a precision; for floating
point conversions, this specifies the number of digits to
appear after the decimal point; for character string
conversions, this specifies the maximum number of
characters to be printed from a string;

* Optionally, the character I, which specifies that a
conversion which normally is performed on an intis to be
performed on a long. This applies to the d, o, and x
conversions.

* A character which specifies the type of conversion to be
performed

A field width or precision may be • instead of a number,
specifying that the next available arg, which must be an int,
supplies the field width or precision.

The conversion characters are:

d, o, or x The int in the corresponding arg is converted to
decimal, octal, or hexadecimal notation,
respectively, and output;

u The unsigned integer arg is converted to
decimal notation;

c The character arg is output. Null characters are
ignored;

s The characters in the string pointed at by arg
are output until a null character or the number
of characters indicated by the precision is
reached If the precision is zero or missing, all
characters in the string, up to the terminating
null, are output;

f The float or double arg is converted to decimal
notation in the style '[-]dddddd'. The number

- lib.38-

PRINTF (C, M) PRINTF

e

g

%

SEE ALSO

of d's after the decimal point is equal to the
precision given in the conversion specification.
If the precision is missing, it defaults to six
digits. If the precision is explicitly 0, the
decimal point is also not printed
The float or double arg is converted to the style
'[-]dddde[-]dd', where there is one digit before
the decimal point and the number after is equal
to the precision given. If the precision is
missing, it defaults to six digits.
The float or double arg is printed in style d, f,
or e, whichever gives full precision in
minimum space.
Output a %. No argument is converted

Standard I/0 (0)

EXAMPLES

1. The following program fragment:

char *name; float amt;
printf("your total, %s, is $%f\n", name, amt);

will print a message of the form

your total, Alfred, is $3.120000

Since the precision of the %f conversion wasn't specified,
it defaulted to six digits to the right of the decimal point.

2. This example modifies example 1 so that the field width
for the %s conversion is three characters, and the field
width and precision of the %f conversion are 10 and 2,
respectively. The %f conversion will also use 0 as a pad
character, rather than blank

char *name; float amt;
printf("your total, %3s, is $%10.2f\n", name, amt);

3. This example modifies example 2 so that the field width of
the %s conversion and the precision of the %f conversion
are taken from the variables nw and ap:

char *name; float amt; int nw, ap;
printf("your total %*s,is $%10.*f\n",nw,name,ap,amt);

4. This example demonstrates how to use the format function
by listing print/, which calls format with each character
that it generates.

- lib.39-

PRINTF (C, M)

printf(fmt,args)
char *fmt; unsigned args;
{

}

extern int putchar();
format(putchar,fmt,&args);

- lib.40-

PRINTF

PUTC (C) PUTC

NAME
putc, aputc, putchar, putw, puterr
- put character or word to a stream

SYNOPSIS
#include "stdio.h"

putc(c, stream)
char c;
FILE *stream;

aputc(c, stream)
char c;
FILE *stream;

putchar(c)
char c;

pu tw(w ,stream)
FILE *stream;

puterr(c)
char c;

DESCRIPTION

/* non-Unix function • I

/* non-Unix function • I

putc writes the character c to the named output stream. It
returns c as its value.

aputc is used to write text characters to files and devices. It
generally behaves like putc, and writes a single character to a
stream. It differs from putc as follows:

* When a newline character is passed to aputc, an end- of
line sequence (eg, carriage return followed by line feed on
CP IM, and carriage return only on Apple DOS) is written
to the stream;

• The most significant bit of a character is set to zero before
being written to the stream.

* aputc is not a UNIX function. It is, however, supported on
all Aztec C systems, and provides a convenient, system
independent way for a program to write text.

* putchar writes the character c to the standard output
stream, stdout. It's identical to aputc(c, stdout).

* putw writes the word w to the specified stream. It returns
w as its value. putw neither requires nor causes special
alignment in the file.

* puterr writes the character c to the standard error stream,
stderr. It's identical to aputc(c, stderr). It is not a UNIX
function.

SEE ALSO
Standard If 0

- lib.41 -

PUTC (C) PUTC

DIAGNOSTICS
These functions return EOF (-1) upon error. In this case, an
error code is set in the global integer errno.

- lib.42-

PUTS (C) PUTS

NAME
puts, fputs - put a character string on a stream

SYNOPSIS
#include "stdio.h"

puts(s)
char *s;

fputs(s, stream)
char •s;
FILE *stream;

DESCRIPTION
puts writes the null-terminated string s to the standard output
stream, stdout, and then an end-of-line sequence. It returns a
non-negative value if no errors occur.

/puts copies the null-terminated strings to the specified output
stream. It returns 0 if no errors occur.

Both functions write to the stream using aputc. Thus, they can
only be used to write text. See the PUTC section for more
details on aputc.

Note that puts and fputs differ in this way: On encountering a
newline character, puts writes an end-of-line sequence and /puts
doesn't

SEE ALSO
Standard I/0 (0), putc

DIAGNOSTICS
If an error occurs, these functions return EOF (-1) and set an
error code in the global integer errno.

- lib.43-

QSORT (C) QSORT

NAME
qsort - sort an array of records in memory

SYNOPSIS
qsort(array, number, width, func)
char *array;
unsigned number;
unsigned width;
int (*func)();

DESCRIPTION
qsort sorts an array of elements using Hoare's Quicksort
algorithm. array is a pointer to the array to be sorted; number is
the number of record to be sorted; width is the size in bytes of
each array element; June is a pointer to a function which is
called for a comparison of two array elements.

June is passed pointers to the two elements being compared It
must return an integer less than, equal to, or greater than zero,
depending on whether the first argument is to be considered less
than, equal to, or greater than the second

EXAMPLE
The Aztec linker, LN, can generate a file of text containing a
symbol table for a program. Each line of the file contains an
address at which a symbol is located. followed by a space,
followed by the symbol name. The following program reads such
a symbol table from the standard input, sorts it by address, and
writes it to standard output

- lib.44-

QSORT (C)

#include "stdio.h"
#define MAXLINES 2000
#define LINESIZE 16
char *lines[MAXLINFS], *malloc();

main()
{

int i,numlines, cmp();
char buflLINESIZE];

QSORT

for (numlines=O; numlines<MAXLINES; ++numlines){
if (gets(buf) == NULL)

}

}

break;
lines[numlines] = malloc(LINESIZE);
strcpy(lines[numlines], buf);

qsort(lines, numlines, 2, cmp);
for (i = 0; i <numlines; ++i)

printf("%s\n", lines[i]);

cmp(a,b)
char **a, **b;
{

return strcmp(*a, *b);
}

- lib.45-

RAN (M)

NAME
ran - random number generator

SYNOPSIS
double ran()

DESCRIPTION

RAN

ran returns as its value a random number between 0.0 and 1.0.

- lib.46-

READ (C) READ

NAME
read - read from device or file without buffering

SYNOPSIS
read (fd, buf,bufsize)
int fd, bufsize; char *buf;

DFSCRIPTION
read reads characters from a device or disk file which has been
previously opened by a call to open or creat. In most cases, the
information is read directly into the caller's buffer.

fd is the file descriptor which was returned to the caller when
the device or file was opened

buf is a pointer to the buffer into which the information is to be
placed

bufsize is the number of characters to be transferred

If read is successful, it returns as its value the number of
characters transferred

If the returned value is zero, then end-of-file has been reached,
immediately, with no bytes read

SEE ALSO
Unbuffered I/0 (0), open, close

DIAGNOSTI<:S
If the operation isn't successful, read returns -1 and places a
code in the global integer errno.

- lib.47-

RENAME (C) RENAME

NAME
rename - rename a disk file

SYNOPSIS
rename(oldname, newname)
char *oldname,*newname;

DESCRIPTION
rename changes the name of a file.

/* non-Unix function • I

oldname is a pointer to a character array containing the old file
name, and newname is a pointer to a character array containing
the new name of the file.

If successful, rename returns 0 as its value; if unsuccessful, it
returns -1.

If a file with the new name already exists, rename sets
E EXIST in the global integer errno and returns -1 as its value
without renaming the file.

- lib.48-

SCANF (C) SCANF

NAME
scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
#include "stdio.h"

scanf(format [,pointer] ...)
char *format;

fscanf(stream, format [,pointer] ...)
FILE *stream;
char *format;

sscanf(buffer, format [,pointer] ...)
char *buffer, *format;

DESCRIPTION
These functions convert a string or stream of text characters, as
directed by the control string pointed at by the format
parameter, and place the results in the fields pointed at by the
pointer parameters.

The functions get the text from different places:

scan! gets text from the standard input stream, stdin;

jscanf gets text from the stream specified in its first
parameter, stream;

sscanf gets text from the buffer pointed at by its first
parameter, buffer.

The scan functions are in both c.lib and m.lib, the difference
being that the c.lib versions don't support floating point
conversions. Hence, if floating point conversion is required, the
m.lib versions must be used If floating point conversions aren't
required, either version can be used To use m.lib's version, m.lib
must be specified before c.lib when the program is linked

The control string pointed at by format contains the following
'control items':

* Conversion specifications;
* 'White space' characters (space, tab newline);
* Ordinary characters; that is, characters which aren't

part of a conversion specification and which aren't
white space.

A scan function works its way through a control string, trying to
match each control item to a portion of the input stream or
buffer. During the matching process, it fetches characters one at
a time from the input When a character is fetched which isn't
appropriate for the control item being matched, the scan
function pushes it back into the input stream or buffer and

- lib.49-

SCANF (C) SCANF

finishes processing the current control item. This pushing back
frequently gives unexpected results when a stream is being
accessed by other i/o functions, such as getc, as well as the scan
function. The examples below demonstrate some of the
problems that can occur.

The scan function terminates when it first fails to match a
control item or when the end of the input stream or buffer is
reached It returns as its value the number of matched
conversion specifications, or EOF if the end of the input stream
or buffer was reached

Matching 'white space' characters

When a white space character is encountered in the control
string, the scan function fetches input characters until the first
non-white-space character is read The non-white-space
character is pushed back into the input and the scan function
proceeds to the next item in the control string.

Matching ordinary characters

If an ordinary character is encountered in the control string, the
scan function fetches the next input character. If it matches the
ordinary character, the scan function simply proceeds to the
next control string item. If it doesn't match, the scan function
terminates.

Matching conversion specifications

When a conversion specification is encountered in the control
string, the scan function first skips leading white space on the
input stream or buffer. It then fetches characters from the
stream or buffer until encountering one that is inappropriate for
the conversion specification. This character is pushed back into
the input

If the conversion specification didn't request assignment
suppression (discussed below), the character string which was
read is converted to the format specified by the conversion
specification, the result is placed in the location pointed at by
the current pointer argument, and the next pointer argument
becomes current. The scan function then proceeds to the next
control string item.

If assignment suppression was requested by the conversion
specification, the scan function simply ignores the fetched input
characters and proceeds to the next control item.

Details of input conversion

A conversion specification consists of:

• The character '%', which tells the scan function that it

- lib.50-

SCANF (C) SCANF

has encountered a conversion specification;
* Optionally, the assignment suppression character '*';
* Optionally, a 'field width'; that is, a number specifying

the maximum number of characters to be fetched for
the conversion;

* A conversion character, specifying the type of
conversion to be performed

If the assignment suppression character is present ina conversion
specification, the scan function will fetch characters as if it was
going to perform the conversion, ignore them, and proceed to
the next control string item.

The following conversion characters are supported:

% A single '%' is expected in the input; no assignment
is done.

d A decimal integer is expected; the input digit string
is converted to binary and the result placed in the int
field pointed at by the current pointer argument;

o An octal integer is expected; the corresponding
pointer should point to an int field in which the
converted result will be placed;

x A hexadecimal integer is expected; the converted
value will be placed in the int field pointed at by the
current pointer argument;

s A sequence of characters delimited by white space
characters is expected; they, plus a terminating null
character, are placed in the character array pointed
at by the current pointer argument

c A character is expected It is placed in the char field
pointed at by the current pointer. The normal skip
over leading white space is not done; to read a single
char after skipping leading white space, use '%ls'.
The field width parameter is ignored, so this
conversion can be used only to read a single
character.

[A sequence of characters, optionally preceded by
white space but not terminated by white space is
expected The input characters, plus a terminating
null character, are placed in the character array
pointed at by the current pointer argument. The left
bracket is followed by:

* Optionally, a 'A' or'-' character;
* A set of characters;
• A right bracket, ']'.

- lib.51 -

SCANF (C) SCANF

If the first character in the set isn't A or -, the set
specifies characters which are allowed; characters are
fetched from the input until one is read which isn't
in the set

If the first character in the set is A or -, the· set
specifies characters which aren't allowed; characters
are fetched from the input until one is read which is
in the set

e A floating point number is expected The input string
is converted to floating point format and stored in
the float field pointed at by the current pointer
argument. The input format for floating point
numbers consists of an optionally signed string of
digits, possibly containing a decimal point, optionally
followed by an exponent field consisting of an E or e
followed by an optionally signed digit.

The conversion characters d, o, and x can be capitalized or
preceded by I to indicate that the corresponding pointer is to a
long rather than an int. Similarly, the conversion characters e
and f can be capitalized or preceded by I to indicate that the
corresponding pointer is to a double rather than a float.

The conversion characters o, x, and d can be optionally preceded
by h to indicate that the corresponding pointer is to a short rather
than an int. Since short and int fields are the same in Aztec C,
this option has no effect.

SEE AlSO
Standard I/0 (0)

EXAMPLES

I. In this program fragment, scan! is used to read values for
the int x, the float y, and a character string into the char
array z:

int x; float y; char z[50];
scanf("%d%fo/os", &x, &y, z);

The input line

32 75.36e-l rufus

will assign 32 to x, 7.536 to y, and "rufus " to z. scan! will
return 3 as its value, signifying that three conversion
specifications were matched

The three input strings must be delimited by 'white space'
characters; that is, by blank, tab, and newline characters.
Thus, the three values could also be entered on separate

- lib.52-

SCANF (C) SCANF

lines, with the white space character newline used to
separate the values.

2. This example discusses the problems which may arise
when mixing scan! and other input operations on the same
stream.

In the previous example, the character string entered for
the third variable, z, must also be delimited by white space
characters. In particular, it must be terminated by a space,
tab, or newline character. The first such character read by
scan! while getting characters for z will be 'pushed back'
into the standard input stream. When another read of stdin
is made later, the first character returned will be the white
space character which was pushed back

This 'pushing back' can lead to unexpected results for
programs that read stdin with functions in addition to
scanj. Suppose that the program in the first example wants
to issue a gets call to read a line from stdin, following the
scan! to stdin. scan! will have left on the input stream the
white space character which terminated the third value
read by scan/. If this character is a newline, then gets will
return a null string, because the first character it reads is
the pushed back newline, the character which terminates
gets. This is most likely not what the program had in mind
when it called gets.

It is usually unadvisable to mix scan! and other input
operations on a single stream.

3. This example discusses the behavior of scan! when there
are white space characters in the control string.

The control string in the first example was "%d%f%s". It
doesn't contain or need any white space, since scan/, when
attempting to match a conversion specification, will skip
leading white space. There's no harm in having white
space before the Ofod, between the %d and %f, or between
the Ofof and Ofos. However, placing a white space character
after the Ofos can have unexpected results. In this case,
scan! will, after having read a character string for z, keep
reading characters until a non-white-space character is
read This forces the operator to enter, after the three
values for x, y, and z, a non-white space character; until
this is done, scan! will not terminate.

The programmer might place a newline character at the
end of a control string, mistakenly thinking that this will
circumvent the problem discussed in example 2. One
might think that scan! will treat the newline as it would an

- lib.S3-

SCANF (C) SCANF

ordinary character in the control string; that is, that scant
will search for, and remove, the terminating newline
character from the input stream after it has matched the z
variable. However, this is incorrect, and should be
remembered as a common misinterpretation.

4. scan! only reads input it can match. If, for the first
example, the input line had been

32 rufus 75.36e-1

scan! would have returned with value 1, signifying that
only one conversion specification had been matched x
would have the value 32, y and z would be unchanged All
characters in the input stream following the 32 would still
be in the input stream, waiting to be read

5. One common problem in using scan! involves
mismatching conversion specifications and their
corresponding arguments. If the first example had declared
y to be a double, then one of the following statements
would have been required:

scanf("%d%lf%s", &x, &y, z);

or

scanf("Ofod%F%s", &x, &y, z);

to tell scan! that the floating point variable was a double
rather than a float

6. Another common problem in using scan! involves passing
scan! the value of a variable rather than its address. The
following call to scan! is incorrrect:

int x; float y; char z[50];
scanf("%d%fo/os", x, y, z);

scan! has been passed the value contained in x and y, and
the address of z, but it requires the address of all three
variables. The "address or• operator, &, is required as a
prefix to x and y. Since z is an array, its address is
automatically passed to scan/, so z doesn't need the &
prefix, although it won't hurt if it is given.

7. Consider the following program fragment:

int x; float y; char z[50];
scanf("%2d%f%*d%[1234567890]", &x, &y, z);

When given the following input:

12345 678 90a65

scan! will assign 12 to x, 345.0 to y, skip '678', and place

-Iib.54-

SCANF (C) SCANF

the string '90 ' in z. The next call to getchar will return 'a'.

- lib.SS-

SETBUF (C) SETBUF

NAME
setbuf - assign buffer to a stream

SYNOPSIS
#include "stdio.h"

setbuf(stream, buf)
FILE *stream;
char *buf;

DESCRIPTION
setbuf defines the buffer that's to be used for the i/o stream
stream. If buf is not a NULL pointer, the buffer that it points at
will be used for the stream instead of an automatically allocated
buffer. If buf is a NULL pointer, the stream will be completely
unbuffered

When buf is not NULL, the buffer it points at must contain
BUFSIZ bytes, where BUFSIZ is defined in stdio.h.

setbuf must be called after the stream has been opened. but
before any read or write operations to it are made.

If the user's program doesn't specify the buffer to be used for a
stream, the standard i/o functions will dynamically allocate a
buffer for the stream, by calling the function malloc, when the
first read or write operation is made on the stream. Then, when
the stream is closed. the dynamically allocated buffer is freed by
calling free.

SEE ALSO
Standard I/0 (0), malloc

- lib.56-

SETJMP (C) SETJMP

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
#include "setjmp.h"

setjmp(env)
jmp_ buf env;

longjmp(env, val)
jmp_ buf env;

DESCRIPTION
These functions are useful for dealing with errors encountered
by the low-level functions of a program.

setjmp saves its stack environment in the memory block pointed
at by env and returns 0 as its value.

longjmp causes execution to continue as if the last call to setjmp
was just terminating with value val. val cannot be zero.

The parameter env is a pointer to a block of memory which can
be used by setjmp and longjmp. The block must be defined using
the typedef jmp_buf.

WARNING
longjmp must not be called without env having been initialized
by a call to setjmp. It also must not be called if the function that
called setjmp has since returned

EXAMPLE
In the following example, the function getall builds a record
pertaining to a customer and returns the pointer to the record if
no errors were encountered and 0 otherwise.

getall calls other functions which actually build the record.
These functions in turn call other functions, which in turn ...

getall defines, by calling setjmp, a point to which these functions
can branch if an unrecoverable error occurs. The low level
functions abort by calling longjmp with a non-zero value.

If a low level function aborts, execution continues in getall as if
its call to setjmp had just terminated with a non-zero value.
Thus by testing the value returned by setjmp getall can
determine whether setjmp is terminating because a low level
function aborted

- lib.57-

SETJMP (C) SETJMP

#include "setjmp.h"

jmp _ buf envbuf; I* environment saved here by setjmp *I
getall(ptr)
char *ptr; I* ptr to record to be built *I
{

}

if (setjmp(envbuf))
I* a low level function has aborted *I
return 0;

getfieldl(ptr);
getfield2(ptr);
getfield3(ptr);
return ptr;

Here's one of the low level functions:

getsubfld2l(ptr)
char *ptr;
{

}

if (error)
longjmp(envbuf, -1);

- lib.58-

SIN (M) SIN

NAME
trigonometric functions:
sin, cos, tan, cotan, asin, acos, atan, atan2

SYNOPSIS
#include <math.h>

double sin(x)
double x;

double cos(x)
double x;

double tan(x)
double x;

double cotan(x)
double x;

double asin(x)
double x;

double acos(x)
double x;

double atan(x)
double x;

double atan2(x,y)
double x;

DF.SCRIYTION
sin, cos, tan, and cotan return trigonometric functions of radian
arguments.

asin returns the arc sin in the range -pi/2 to pi/2.

acos returns the arc cosine in the range 0 to pi.

atan returns the arc tangent of x in the range -pi/2 to pi/2.

atan2 returns the arc tangent of xjy in the range -pi to pi.

SEE ALSO
Errors (0)

DIAGNOSTICS
If a trig function can't perform the computation, it returns an
arbitrary value and sets a code in the global integer errno;
otherwise, it returns the computed number, without modifying
errno.

A function will return the symbolic value EDOM if the
argument is invalid, and the value ERANGE if the function
value can't be computed EDOM and ERANGE are defined in
the file errno.h.

- lib.59-

SIN (M) SIN

The values returned by the trig functions when the computation
can't be performed are listed below. The symbolic values are
defined in math.h.

I function
Ism
I cos
I tan
I cotan
1 cotan
1 cotan
I asin
I acos
I atan2

I error

I
I ERANGE
I ERANGE
I ERANGE
1 ERANGE
1 ERANGE
I ERANGE
I EDOM
I EDOM
I EDOM

I f(x)
1 o.o
I o.o
I o.o
1 HUGE
I -HUGEi
1 o.o
I o.o
I o.o
1 o.o

- lib.60-

I
I meaning I
I abs(x) > XMAX I
I abs(x) > XMAX I
I abs(x) > XMAX I
1 O<x< XMIN 1
I -XMIN <X <0 I
1 abs(x) >= XMAX I

I abs(x) > 1.0 I
I abs(x) > 1.0 I
lx=y=O I

SINH (M) SINH

NAME
sinh, cosh, tanh

SYNOPSIS
#include <math.h>

double sinh(x)
double x;

double cosh(x)
double x;

double tanh(x)
double x;

DESCRIPTION
These functions compute the hyperbolic functions of their
arguments.

SEE ALSO
Errors (0)

DIAGNOSTICS
If the absolute value of the argument to sinh or cosh is greater
than 348.6, the function sets the symbolic value ERANGE in
the global integer errno and returns a huge value. This code is
defined in the file errno.h.

If no error occurs, the function returns the computed value
without modifying errno.

- lib.61 -

STRING (C) STRING

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy,
strlen, index, rindex - string operations

SYNOPSIS
char *strcat(sl, s2)
char *sl, *s2;

char *strncat(sl, s2, n)
char *sl, *s2;

strcmp(sl, s2)
char *sl, *s2;

strncmp(sl, s2, n)
char *sl, s2;

char *strcpy(sl, s2)
char *sl, *s2;

char *strncpy(sl, s2, n)
char *sl, *s2;

strlen(s)
char *s;

char *index(s, c)
char *s;

char *rindex(s, c)
char *s;

DESCRIPTION
These functions operate on null-terminated strings, as follows:

strcat appends a copy of string s2 to string sl. strncat copies at
most n characters. Both terminate the resulting string with the
null character (\0) and return a pointer to the first character of
the resulting string.

strcmp compares its two arguments and returns an integer
greater than, equal, or less than zero, according as sl is
lexicographically greater than, equal to, or less than s2. strncmp
makes the same comparison but looks at n characters at most

strcpy copies string s2 to sl stopping after the null character has
been moved strncpy copies exactly n characters: if s2 contains
less than n characters, null characters will be appended to the
resulting string until n characters have been moved; if s2
contains n or more characters, only the first n will be moved,
and the resulting string will not be null terminated

strlen returns the number of characters which occur in s up to
the first null character.

- lib.62-

STRING (C) STRING

index returns a pointer to the first occurrance of the character c
in string s, or zero if c isn't in the string.

rindex returns a pointer to the last occurrance of the character c
in string s, or zero if c isn't in the string.

- lib.63-

TOUPPER (C) TO UPPER

NAME
toupper, tolower

SYNOPSIS
toupper(c)

tolower(c)

#include "ctype.h"

_ toupper(c)

_ tolower(c)

DESCRIPTION
toupper converts a lower case character to upper case: if c is a
lower case character, toupper returns its upper case equivalent as
its value, otherwise c is returned

to/ower converts an upper case character to lowr case: if c is an
upper case character to/ower returns its lower case equivalent,
otherwise c is returned

toupper and to/ower do not require the header file ctype.h.

_toupper and _to/ower are macro versions of toupper and
to/ower, respectively. They are defined in ctype.h. The difference
between the two sets of functions is that the macro versions will
sometimes translate non-alphabetic characters, whereas the
function versions don't.

- lib.64-

UNGETC (C) UNGETC

NAME
ungetc - push a character back into input stream

SYNOPSIS
#include "stdio.h"

ungetc(c, stream)
FILE •stream;

DESCRIPTION
ungetc pushes the character c back on an input stream. That
character will be returned by the next getc call on that stream.
ungetc returns c as its value.

Only one character of pushback is guaranteed EOF cannot be
pushed back.

SEE ALSO
Standard 1/0 (0)

DIAGNaiTICS
ungetc returns EOF (-1) if the character can't be pushed back

- lib.65-

UNLINK (C) UNLINK

NAME
unlink

SYNOPSIS
unlink(name)
char *name;

DESCRIPTION
unlink erases a file.

name is a pointer to a character array containing the name of
the file to be erased

unlink returns 0 if successful.

DIAGNOSTICS
unlink returns -1 if it couldn't erase the file and places a code in
the global integer errno describing the error.

- lib.66-

WRITE (C) WRITE

NAME
write

SYNOPSIS
write(fd,buf,bufsize)
int fd, bufsize; char *buf;

DESCRIPTION
write writes characters to a device or disk which has been
previously opened by a call to open or creat. The characters are
written to the device or file directly from the caller's buffer.

fd is the file descriptor which was returned to the caller when
the device or file was opened

buf is a pointer to the buffer containing the characters to be
written.

bufsize is the number of characters to be written.

If the operation is successful, write returns as its value the
number of characters written.

SEE ALSO
Unbuffered I/0 (0), open, close, read

DIAGNOSTICS
If the operation is unsuccessful, write returns -1 and places a
code in the global integer errno.

- lib.67-

WRITE (C) WRITE

-lib.68-

STYLE

- style.l -

STYLE Aztec C

Chapter Contents

Style ... style
1. Introduction ... 3
2. Structured Programming .. 7
3. Top-down Programming ... 8
4. Defensive Programming and Debugging 10
5. Things to watch out for .. 15

- style.2-

Aztec C STYLE

Style

This section was written for the programmer who is new to the C
language, to communicate the special character of C and the
programming practices for which it is best suited This material will
ease the new user's entry into C. It gives meaning to the peculiarities
of C syntax, in order to avoid the errors which will otherwise
disappear only with experience.

1. Introduction

what's in it for me?

These are the benefits to be reaped by following the methods
presented here:

* Reduced debugging times;

* Increased program efficiency;

* Reduced software maintenance burden

The aim of the responsible programmer is to write straightforward
code, which makes his programs more accessible to others. This section
on style is meant to point out which programming habits are
conducive to successful C programs and which are especially prone to
cause trouble.

The many advantages of C can be abused Since C is a terse, subtle
language, it is easy to write code which is unclear. This is contrary to
the "philosophy" of C and other structured programming languages,
according to which the structure of a program should be clearly
defined and easily recognizable.

keep it simple

There are several elements of programming style which make C
easier to use. One of these is simplicity. Simplicity means keep it simple.
You should be able to see exactly what your code will do, so that when
it doesn't you can figure out why.

A little suspicion can also be useful. The particular "problem areas"
which are discussed later in this section are points to check when code
"looks right'' but does not work. A small omission can cause many
errors.

learn the C idioms

C becomes more valuable and more flexible with time. Obviously,
elementary problems with syntax will disappear. But more importantly,

- style.J-

STYLE Aztec C

C can be described as "idiomatic." This means that certain expressions
become part of a standard vocabulary used over and over.

For example,

while ((c = getchar()) != EOF)

is readily recognized and written by any C programmer. This is often
used as the beginning of a loop which gets a character at a time from a
source of input. Moreover, the inside set of parentheses, often omitted
by a new C programmer, is rarely forgotten after this construct has
been used a few times.

be flexible in using the library

The standard library contains a choice of functions for performing
the same task Certain combinations offer advantages, so that they are
used routinely. For instance, the standard library contains a function,
scan/, which can be used to input data of a given format. In this
example, the function "scans" input for a floating point number:

scanf("%f', &flt_num);

There are several disadvantages to this function. An important debit
is that it requires a lot of code. Also, it is not always clear how this
function handles certain strings of input. Much time could be spent
researching the behavior of this function. However, the equivalent to
the above is done by the following:

flt_num = atof(gets(inp_but));

This requires considerably less code, and is somewhat more
straightforward gets puts a line of input into the buffer, "inp buf,"
and atof converts it to a floating point value. There is no question
about what the input function is "looking for" and what it should find

Furthermore, there is greater flexibility in the second method of
getting input For instance, if the user of the program could enter
either a special command ("e" for exit) or a floating point value, the
following is possible:

gets(inp but);
if (inp buf10] == 'e')

exit(O);
flt_num = atof(inp_but);

Here, the first character of input is checked for an "e", before the
input is converted to a float

The relative length of the library description of the scan! function
is an indication of the problems that can arise with that and related
functions.

- style.4-

Aztec C STYLE

write readable code

Readability can be greatly enhanced by adhering to what common
sense dictates. For instance, most lines can easily accommodate more
than one statement Although the compiler will accept statements
which are packed together indiscriminately, the logic behind the code
will be lost. Therefore, it makes sense to write no more than one
statement per line.

In a similar vein, it is desirable to be generous with whitespace. A
blank space should separate the arithmetic and assignment operators
from other symbols, such as variable names. And when parentheses are
nested, dividing them with spaces is not being too prudent. For
example,

if((fp=fopen("filename","r")==NULL))

is not the same as

'-l if ((fp = fopen("filename", "r")) == NULL)

The first line contains a misplaced parenthesis which changes the
meaning of the statement entirely. (A file is opened but the file
pointer will be null.) If the statement was expanded, as in the second
line, the problem could be easily spotted, if not avoided altogther.

use straightforward logical expressions

Conditionals are apt to grow into long expressions. They should be
kept short Conditionals which extend into the next line should be
divided so that the logic of the statement can be visualized at a glance.
Another solution might be to reconsider the logic of the code itself.

learn the rules fu- expression evaluation

Keep in mind that the evaluation of an expression depends upon
the order in which the operators are evaluated This is determined
from their relative precedence.

Item 7 in the list of "things to watch out for", below, gives an
example of what may happen when the evaluation of a boolean
expression stops "in the middle". The rule in C is that a boolean will be
evaluated only until the value of the expression can be determined

Item 8 gives a well known example of an "undefined" expression,
one whose value is not strictly determined

In general, if an expression depends upon the order in which it is
evaluated, the results may be dubious. Though the result may be
strictly defined, you must be certain you know what that definition is.

a matter of taste

There are several popular styles of indentation and placement of
the braces enclosing compound statements. Whichever format you

- style.5-

STYLE Aztec C

adopt, it is important to be consistent Indentation is the accepted way
of conveying the intended nesting of program statements to other
programmers. However, the compiler understands only braces. Making
them as visible as possible will help in tracking down nesting errors
later.

However much time is devoted to writing readible code, C is low
level enough to permit some very peculiar expressions.

!* It is important to insert comments on a regular basis! *I
Comments are especially useful as brief introductions to function

definitions.

In general, moderate observance of these suggestions will lessen the
number of "tricks" C will play on you-- even after you have mastered
its syntax.

- style.6-

Aztec C STYLE

2. Structured Programming

"Structured programming" is an attempt to encourage programming
characterized by method and clarity. It stems from the theory that any
programming task can be broken into simpler components. The three
basic parts are statements, loops, and conditionals. In C, these parts are,
respectively, anything enclosed by braces or ending with a semicolon;
for, while and do-while; if-else.

modularity and block structure

Central to structured programming is the concept of modularity. In
one sense, any source file compiled by itself is a module. However, the
term is used here with a more specific meaning. In this context,
modularity refers to the independence or isolation of one routine from
another. For example, a routine such as main() can call a function to
do a given task even though it does not know how the task is
accomplished or what intermediate values are used to reach the final
result.

Sections of a program set aside by braces are called "blocks". The
"privacy" of C's block structure ensures that the variables of each block
are not inadvertently shared by other blocks. Any left brace ({) signals
the beginning of a block, such as the body of a function or a for loop.
Since each block can have its own set of variables, a left brace marks
an opportunity to declare a temporary variable.

A function in C is a special block because it is called and is passed
control of execution. A function is called, executes and returns.
Essentially, a C program is just such a routine, namely, main.

A function call represents a task to be accomplished Program
statements which might otherwise appear as several obscure lines can
be set aside in a function which satisfies a desired purpose. For
instance, getchar is used to get a single character from standard input.

When a section of code must be modified, it is simpler to replace a
single modular block than it is to delete a section of an unstructured
program whose boundaries may be unclear at best In general, the
more precisely a block of program is defined, the more easily it can be
changed

- style.7-

STYLE Aztec C

3. Top-down Programming

''Top-down" programming is one method that takes advantage of
structured programming features like those discussed above. It is a
method of designing, writing, and testing a program from the most
general function (i.e., (main()) to the most specific functions (such as
getchar()).

All C programs begin with a function called main(). main() can be
thought of as a supervisor or manager which calls upon other functions
to perform specific tasks, doing little of the work itself. If the overall
goal of the program can be considered in four parts (for instance,
input, processing, error checking and output), then main() should call
at least four other functions.

step one

The first step in the design of a program is to identify what is to be
done and how it can be accomplished in a "programmable" way. The
main routine should be greatly simplified It needs to call a function to
perform the crucial steps in the program. For example, it may call a
function, init(), which takes care of all necessary startup initializations.
At this point, the programmer does not even need to be certain of all
the initializations that will take place in init().

All functions consist of three parts: a parameter list, body, and
return value. The design of a function must focus on each of these
three elements.

During this first stage of design, each function can be considered a
black box. We are concerned only with what goes in and what comes
out, not with what goes on inside.

Do not allow yourself to be distracted by the details of the
implementation at this point Flowcharts, pseudocode, decision tables
and the like are useful at this stage of the implementation.

A detailed list of the data which is passed back and forth between
functions is important and should not be neglected The interface
between functions is crucial.

Although all functions are written with a purpose in mind, it is
easy to unwittingly merge two tasks into one. Sometimes, this may be
done in the interests of producing a compact and efficient program
function. However, the usual result is a bulky, unmanageable function.
If a function grows very large or if its logic becomes difficult to
comprehend, it should be reduced by introducing additional function
calls.

step two

There comes a time when a program must pass from the design
stage into the coding stage. You may find the top-down approach to

- style.8-

Aztec C STYLE

coding too restrictive. According to this scheme, the smallest and most
specific functions would be coded last. It is our nature to tackle the
most daunting problems first, which usually means coding the low
level functions.

Whereas the top-down approach is the preferred method for
designing software, the bottom-up approach is often the most practical
method for writing software. Given a good design, either method of
implementation should produce equally good results.

One asset of top-down writing is the ability to provide immediate
tests on upper level routines. Unresolved function calls can be satisfied
by "dummy" functions which return a range of test values. When new
functions are added, they can operate in an environment that has
already been tested

C functions are most effective when they are as mutually
independent as is possible. This independence is encouraged by the
fact that there is normally only one way into and one way out of a
function: by calling it with specific arguments and returning a
meaningful value. Any function can be modified or replaced so long as
its entry and exit points are consistent with the calling function.

- style.9-

STYLE Aztec C

4. Defensive Programming and Debugging

"Defensive programming" obeys the same edict as defensive
driving: trust no one to do what you expect There are two sides to
this rule of thumb. Defend against both the possibility of bad data or
misuse of the program by the user, and the possibility of bad data
generated by bad code.

Pointers, for example, are a prime source of variables gone astray.
Even though the "theory" of pointers may be well understood, using
them in new ways (or for the first time) requires careful consideration
at each step. Pointers present the fewest problems when they appear in
familiar settings.

faced with the unknown

When trying something new, first write a few test programs to
make sure the syntax you are using is correct For example, consider a
buffer, str _buj, filled with null-terminated strings. Suppose we want to
print the string which begins at offset begin in the buffer. Is this the
way to do it?

printf("%s", str_buflbegin]);

A little investigation shows that str_buflbegin] is a character, not a
pointer to a string, which is what is called for. The correct statement is

printf("%s", str _ buf + begin);

This kind of error may not be obvious when you first see it. There
are other topics which can be troublesome at first exposure. The
promotion of data types within expressions is an example. Even if you
are sure how a new construct behaves, it never hurts to doublecheck
with a test program.

Certain programming habits will ease the bite of syntax. Foremost
among these is simplicity of style. Top-down programming is aimed at
producing brief and consequently simple functions. This simplicity
should not disappear when the design is coded

Code should appear as "idiomatic" as possible. Pointers can again
provide an example: it is a fact of C syntax that arrays and pointers
are one and the same. That is,

array[offset]

is the same as

*(array + offset)

The only difference is that an array name is not an !value; it is
fixed But mixing the two ways of referencing an object can cause
confusion, such as in the last example. Choosing a certain idiom,
which is known to behave a certain way, can help avoid many errors in
usage.

- style.lO -

Aztec C STYLE

when bu~ strike

The assumption must be that you will have to return to the source
code to make changes, probably due to what is called a bug. Bugs are
characterized by their persistence and their tendency to multiply
rapidly.

Errors can occur at either compile-time or run-time. Compile-time
errors are somewhat easier to resolve since they are usually errors in
syntax which the compiler will point out.

from the compiler

If the compiler does pick up an error in the source code, it will
send an error code to the screen and try to specify where the error
occurred There are several peculiarities about error reporting which
should be brought up right away.

The most noticeable of these peculiarities is the number of spurious
errors which the compiler may report. This interval of inconsistency is
referred to as the compiler's recovery. The safest way to deal with an
unusually long list of errors is to correct the first error and then
recompile before proceeding.

The compiler will specify where it "noticed" something was wrong.
This does not necessarily indicate where you must make a change in
the code. The error number is a more accurate clue, since it shows
what the compiler was looking for when the error occurred

if this ever happens to you

A common example of this is error 69: "missing semicolon." This
error code will be put out if the compiler is expecting a semicolon
when it finds some other character. Since this error most often occurs
at the end of a line, it may not be reported until the first character of
the following line-- recall that whitespace, such as a newline character,
is ignored

Such an error can be especially treacherous in certain situations.
For example, a missing semicolon at the end of a #include'd file may
be reported when the compiler returns to read input in the original
file.

In general, it is helpful to look at a syntax error from the
compiler's point of view.

Consider this error:

- style.ll -

STYLE

struct structag {
char c;
inti;

}

int j;

Aztec C

This should generate an error 16: "data type conflict". The arrow in the
error message should show that the error was detected right after the
"int" in the declaration of j. This means that the error has to do with
something before that line, since there is nothing illegal about the int
keyword

By inspection, we may see that the semicolon is missing from the
preceding line. If this fact escapes our notice, we still know that error
16 means this: the compiler found a declaration of the form

[data type] [data type] [symbol name]

where the two data types were incompatible. So while shortint is a
good data type, double int is not A small intuitive leap leads us to
assume that the compiler has read our source as a kind of "struct int"
declaration; struct is the only keyword preceding the int which could
have caused this error. Since the compiler is reading the two
declarations as a single statement, we must be missing a delimiter.

run-time errors

It takes a bit more ingenuity to locate errors which occur at run
time. In numerical calculations, only the most anomalous results will
draw attention to themselves. Other bugs will generate output which
will appear to have come from an entirely different program.

A bug is most useful when it is repeatable. Bugs which show up
only "sometimes" are merely vexing. They can be caused by a
corrupted disk file or a bad command from the user.

When an error can be consistently produced, its source can be more
easily located The nature of an error is a good clue as to its source.
Much of your time and sanity will be preserved by setting aside a few
minutes to reflect upon the problem.

Which modules are involved in the computation or process? Many
possibilities can be eliminated from the start, such as pieces. of code
which are unrelated to the error.

The first goal is to determine, from a number of possibilities,
which module might be the source of the bug.

checking input data

Input to the program can be checked at a low cost. Error checking
of this sort should be included on a "routine" basis. For instance, "if
((fp=fopen("file","r"))==NULL)" should be reflex when a file is

- style.12 -

Aztec C STYLE

opened Any useful error handling can follow in the body of the if.

It is easy to check your data when you first get your hands on it. If
an error occurs after that, you have a bug in your program.

printf it

It is useful to know where the data goes awry. One brute force way
of tracking down the bug is to insert print! statements wherever the
data is referenced When an unexpected value comes up, a single
module can be chosen for further investigation.

The printf search will be most effective when done with more
refinement. Choose a suspect module. There are only two keys points
to check the entry and return of the function. print! the data in
question just as soon as the function is entered If the values are
already incorrect, then you will want to make sure the correct data was
passed in the function call.

If an incorrect value is returned, then the search is confined to the
guilty function. Even if the function returns a good value, you may
want to make sure it is handled correctly by the calling function.

If everything seems to be working, jump to the next tricky module
and perform another check When you find a bad result, you will still
have to backtrack to discover precisely where the data was spoiled

function calls

Be aware that data can be garbled in a funtion call. Function
parameters must be declared when they are not two byte integers. For
instance, if a function is called:

fseek(fp, 0, 0);

in order to "seek" to the beginning of a file, but the function is defined
this way:

fseek(fp, offset, origin)
FILE *fp;
long offset;
int origin;

there will be unfortunate consequences.

The second parameter is expected to be a long integer (four bytes),
but what is being passed is a short integer (two bytes). In a function
call, the arguments are just being pushed onto the stack; when the
function is entered, they are pulled off again. In the example, two
bytes are being pushed on, but four bytes (whatever four bytes are
there) are being pulled off.

The solution is just to make the second parameter a long, with a
suffix (OL) or by the cast operator (as in (long)i).

- style.13-

STYLE Aztec C

A similar problem occurs when a non-integer return value is not
declared in the calling function. For example, if sqrt is being called, it
must be declared as returning a double:

double sqrt();

This method of debugging demonstrates the usefulness of having a
solid design before a function is coded If you know what should be
going into a function and what should be coming out, the process of
checking that data is made much simpler.

found it

When the guilty function is isolated, the difficulty of finding the
bug is proportional to the simplicity of the code. However, the search
can continue in a similar way. You should have a good notion of the
purpose of each block, such as a loop. By inserting a print! in a loop,
you can observe the effect of each pass on the data.

printfs can also point out which blocks are actually being executed
"Falling through" a test, such as an if or a switch, can be a subtle source
of problems. Conditionals should not leave cases untested An else, or a
default in a switch, can rescue the code from unexpected input

And if you are uncertain how a piece of code will work, it is
usually worthwhile to set up small test programs and observe what
happens. This is instructional and may reveal a bug or two.

- style.14 -

Aztec C STYLE

5. Thin~ to Watch Out for

Some errors arise again and again. Not all of them go away with
experience. The following list will give you an idea of the kinds of
things that can go wrong.

• missing semicolon or brace

The compiler will tell you when a missing semicolon or brace has
introduced bad syntax into the code. However, often such an error will
affect only the logical structure of the program; the code may compile
and even execute. When this error is not revealed by inspection, it is
usually brought out by a test print! which is executed too often or not
enough. See compiler error 69.

• assignment(=) vs comparison(==)

Since variables are assigned values more often than they are tested
for equality, the former operator was given the single keystroke: =.
Notice that all the comparison tests with equality are two characters:
<=, >= and ==.

• misplaced semicolon

When typing in a program, keep in mind that all source lines do not
automatically end with a semicolon. Control lines are especially
susceptible to an unwanted semicolon:

for (i=O; i<lOO; i++);
printf("Ofod",i);

This example prints the single number 100.

• division (/) vs escape sequence {\)

C definitely distinguishes between these characters. The division
sign resides below the question mark on a standard console; the
backslash is generally harder to find

• character constant vs character string

Character constants are actually integers equal to the ASCII values
of the respective character. A character string is a series of characters
terminated by a null character (\0). The appropriate delimiter is the
single quote and double quote, respectively.

• uninitialized variable

At some point, all variables must be given values before they are
used The compiler will set global and static variables to zero, but
automatic variables are guaranteed to contain garbage every time they
are created

- style.lS-

STYLE Aztec C

* evaluation of expressions

For most operations in C, the order of evaluation is rigidly defined;
thus, many expressions can be written without lots of parentheses.

However, the order in which unparenthesized expressions are
evaluated are not always what you would expect; therefore, it's usually
a good idea to use parentheses liberally in expressions where there may
be doubt about the order of evaluation (in your mind or in the mind
of someone who may later read your program).

For example, the result of the following example is 6:

int a = 2 b = 3 c = 4 d;
d=a+b/a*'c; '

The above expression is equivalent to the parenthesized expression d =
a + ((b I a) • c);. You should probably use some parentheses in this
expression, to make its effect clear to yourself and to others.

Consider this example:

if((c=O)I(c= I))
printf("%d", c);

"I" will be printed; since the first half of the conditional evaluates
to zero, the second half must be also evaluated But in this example:

if ((c = 0) && (c = I))
' printf("%d", c);

a "0" is printed Since the first half evaluates to zero, the value of the
conditional must be zero, or false, and evaluation stops. This is a
property of the logical operators.

* undefined order of evaluation

Unfortunately, not all operators were given a complete set of
instructions as to how they should be evaluated A good example is the
increment (or decrement) operator. For instance, the following is
undefined:

i = ++i + --i/++i- i++;

How such an expression is evaluated by a particular implementation is
called a "side effect." In general, side effects are to be avoided

* evaluation of boolean expressions

Ands, ors and nots invite the programmer to write long
conditionals whose very purpose is lost in the code. Booleans should be
brief and to the point. Also, the bitwise logical operators must be fully
parenthesized The table in sections 2.12 and 18.I of The C
Programming Language, by Kernighan and Ritchie, shows their
precedence in relation to other operators.

- style.16 -

Aztec C STYLE

Here is an extreme example of how a lengthy boolean can be
reduced:

if ((c = getchar()) != EOF && c >='a' && c <= 'z' &&
(c = getchar()) >='I' && c <= '9')

printf("good input\n");

if ((c = getchar()) != EO F)
if (c >='a' && c <= 'z')

if ((c = getchar()) >= '0' && c <= '9')
printf("good input\n");

• badly formed comments

The theory of comment syntax is simply that everything occurring
between a left I* and a right *I is ignored by the compiler.
Nonetheless, a missing *I should not be overlooked as a possible error.

Note that comments cannot be nested, that is

I* I* this will cause an error *I *I
And this could happen to you too:

I* the rest of this file is ignored until another comment !*
* nesting error

Remember that nesting is determined by braces and not by
indentations in the text of the source. Nested if statements merit
particular care since they are often paired with an else.

* usage of else

Every else must pair up with an if. When an else has inexplicably
remained unpaired, the cause is often related to the first error in this
list.

* falling through the cases in a switch

To maintain the most control over the cases in a switch statement, it
is advisable to end each case with a break, including the last case in the
switch.

* strange loops

The behavior of loops can be explored by inserting print!
statements in the body of the loop. Obviously, this will indicate if the
loop has even been entered at all in course of a run. A counter will
show just how many times the loop was executed; a small slip-up will
cause a loop to be run through once too often or seldom. The
condition for leaving the loop should be doublechecked for accuracy.

- style.17-

STYLE Aztec C

* use of string§

All strings must be terminated by a null character in memory.
Thus, the string, "hello", will occupy a six-element array; the sixth
element is ' '. This convention is essential when passing a string to a
standard library function. The compiler will append the null character
to string constants automatically.

* pointer vs object of a pointer

The greatest difficulty in using pointers is being sure of what is
needed and what is being used Functions which take a pointer
argument require an address in memory. The best way to ensure that
the correct value is being passed is to keep track of what is being
pointed to by which pointer.

* array subscripting

The first element in a C array has a subscript of zero. The array
name without a subscript is actually a pointer to this element.
Obviously, many problems can develop from an incorrect subscript.
The most damaging can be subscripting out of bounds, since this will
access memory above the array and overwrite any data there. If array
elements or data stored with arrays are being lost, this error is a good
candidate.

* function interface

During the design stage, the components of a program should be
associated with functions. It is important that the data which is passed
among or shared by these functions be explicitly defined in the
preliminary design of the program. This will greatly facilitate the
coding of the program since the interface between functions must be
precise in several respects.

First of all, if the parameters of a function are established, a call
can be made without the reservation that it will be changed later.
There is less chance that the arguments will be of the wrong type or
specified in the wrong order.

A function is given only a private copy of the variables it is passed
This is a good reason to decide while designing the program how
functions should access the data they require. You will be able to detail
the arguments to be passed in a function call, the global data which the
function will alter, the value which the function will return and what
declarations will be appropriate-- all without concern for how the
function will be coded

Argument declarations should be a fairly simple matter once these
things are known. Note that this declaration list must stand before the
left brace of the function body.

- style.18 -

Aztec C STYLE

The type of the function is the same as the type of the value it
returns. Functions must be declared just like any variable. And just
like variables, functions will default to type int, that is, the compiler
will assume that a function returns an integer if you do not tell it
otherwise with a declaration. Thus if function f calls function g which
returns a variable of type double, the following declaration is needed:

function f()
{

double g(), bigfloat;

g(bigfloat);
}
double g(arg)
double arg;
{

return(arg);
}

• be sure of what a function returns

You will probably know very well what is returned by a function
you have written yourself. But care should be taken when using
functions coded by someone else. This is especially true of the standard
library functions. Most of the supplied library functions will return an
int or a char pointer where you might expect a char. For instance,
getchar() returns an int, not a char. The functions supplied by Manx
adhere to the UNIX model in all but a few cases.

Of course, the above applies to a function's arguments as well

• shared data

Variables that are declared globally can be accessed by all functions
in the file. This is not a very safe way to pass data to functions since
once a global variable is altered, there is no returning it to its former
state without an elaborate method of saving data. Moreover, global data
must be carefully managed; a function may process the wrong variable
and consequently inhibit any other function which depends on that
data.

Since C provides for and even encourages private data, this
definitely should not be a common bug.

- style.19 -

STYLE Aztec C

- style.20 -

COMPILER ERROR MESSAGES

- err.l -

Compiler Error Messages Aztec C

Chapter Contents

Compiler Error Codes ... err
1. Summary .. 4
2. Explanations .. 7
3. Fatal Error Messages ... 35

- err.l-

Aztec C Compiler Error Messages

Compiler Error Messages

This chapter discusses error messages that can be generated by the
compiler. It is divided into three sections: the first summarizes the
messages, the second explains them, and the third discusses fatal
compiler error messsages.

- err.3-

Compiler Error Messages

1. Summary of error codes

No. Interpretation

I: bad digit in octal constant
2: string space exhausted
3: unterminated string
4: internal error
5: illegal type for function
6: inappropriate arguments
7: bad declaration syntax
8: syntax error in typecast
9: array dimension must be constant
IO: array size must be positive integer
II: data type too complex
I2: illegal pointer reference
I3: unimplemented type
14: internal
15: internal
16: data type conflict
17: unsupported data type
18: data type conflict
19: obsolete
20: structure redeclaration
21: missing}
22: syntax error in structure declaration
23: incorrect type for library function (Apprentice C only)

obsolete (other Aztec C compilers)
24: need right parenthesis or comma in arg list
25: structure member name expected here
26: must be structure/union member
27: illegal typecast
28: incompatible structures
29: illegal use of structure
30: missing : in ? conditional expression
31: call of non-function
32: illegal pointer calculation
33: illegal type
34: undefined symbol
35: typedef not allowed here
36: no more expression space
37: invalid expression for unary operator
38: no auto. aggregate initialization allowed
39: obsolete
40: internal
41: initializer not a constant
42: too many initializers

- err.4-

Aztec C

Aztec C

43: initialization of undefined structure
44: obsolete
45: bad declaration syntax
46: missing closing brace
4 7: open failure on include file
48: illegal symbol name
49: multiply defined symbol
50: missing bracket
51: lvalue required
52: obsolete
53: multiply defined label
54: too many labels
55: missing quote
56: missing apostrophe
57: line too long
58: illegal # encountered
59: macro too long
60: obsolete

Compiler Error Messages

61: reference of member of undefined structure
62: function body must be compound statement
63: undefined label
64: inappropriate arguments
65: illegal argument name
66: expected comma
67: invalid else
68: syntax error
69: missing semicolon
70: goto needs a label
71: statement syntax error in do-while
72: 'for' syntax error: missing first semicolon
73: 'for' syntax error: missing second semicolon
74: case value must be an integer constant
75: missing colon on case
76: too many cases in switch
77: case outside of switch
78: missing colon on default
79: duplicate default
80: default outside of switch
81: break/ continue error
82: illegal character
83: too many nested includes
84: too many array dimensions
85: not an argument
86: null dimension in array
87: invalid character constant
88: not a structure
89: invalid use of register storage class
90: symbol redeclared

- err.S-

Compiler Error Messages

91: illegal use of floating point type
92: illegal type conversion
93: illegal expression type for switch
94: invalid identifier in macro definition
95: macro needs argument list
96: missing argument to macro
97: obsolete
98: not enough arguments in macro reference
99: internal
100: internal
101: missing close parenthesis on macro reference
102: macro arguments too long
103: #else with no #if
104: #endif with no #if
105: #endasm with no #asm
106: #asm within #asm block
107: missing #endif
108: missing #endasm
109: #if value must be integer constant
110: invalid use of : operator
Ill: invalid use of void expression
112: invalid use function pointer
113: duplicate case in switch
114: macro redefined
115: keyword redefined
116: field width must be> 0
117: invalid 0 length field
118: field is too wide
119: field not allowed here
120: invalid type for field
121: ptr to int conversion
122: ptr & int not same size
123: function ptr & ptr not same size
124: invalid ptr/ptr assignment
125: too many subscripts or indirection on integer

Aztec C

Error codes between 116 and 125 will not occur on Aztec C
compilers whose version number is less than 3.

Error codes greater than 200 will occur only if there's something
wrong with the compiler. If you get such an error, please send us the
program that generated the error.

- err.6-

Aztec C Compiler Error Messages

2. Explanations

1: bad digit in octal constant

The only numerals permitted in the base 8 (octal) counting system
are zero through seven. In order to distinguish between octal,
hexadecimal, and decimal constants, octal constants are preceded by a
zero. Any number beginning with a zero must not contain a digit
greater than seven. Octal constants look like this: 01, 027, 003.
Hexadecimal constants begin with Ox (e.g., Oxl, OxAAO, OxFFF).

2: string space exhausted

The compiler maintains an internal table of the strings appearing in
the source code. Since this table has a finite size, it may overflow
during compilation and cause this error code. The table default size is
about one or two thousand characters depending on the operating
system. The size can be changed using the compiler option -Z.
Through simple guesswork, it is possible to arrive at a table size
sufficient for compiling your program.

3: unterminated string

All strings must begin and end with double quotes ("). This message
indicates that a double quote has remained unpaired

4: internal error

This error message should not occur. It is a check on the internal
workings of the compiler and is not known to be caused by any
particular piece of code. However, if this error code appears, please
bring it to the attention of MANX It could be a bug in the compiler.
The release documentation enclosed with the product contains further
information.

5: ill~ type for function

The type of a function refers to the type of the value which it
returns. Functions return an int by default unless they are declared
otherwise. However, functions are not allowed to return aggregates
(arrays or structures). An attempt to write a function such as struct sam
june() will generate this error code. The legal function types are char,
int, float, double, unsigned, long, void and a pointer to any type
(including structures).

6: error in argument declaration

The declaration list for the formal parameters of a function stands
immediately before the left brace of the function body, as shown
below. Undeclared arguments default to int, though it is usually better
practice to declare everything. Naturally, this declaration list may be
empty, whether or not the function takes any arguments at all.

- err.7-

Compiler Error Messages Aztec C

No other inappropriate symbols should appear before the left
(open) brace.

badfunction(argl, arg2)
shrt arg I; I* misspelled or invalid keyword *I
double arg 2;
{ I* function body *I
}

goodfunction(argl,arg2)
float argl;
int arg2; I* this line is not required *I
{ !* function body *I
}

7: bad declaration syntax

A common cause of this error is the absence of a semicolon at the
end of a declaration. The compiler expects a semicolon to follow a
variable declaration unless commas appear between variable names
in multiple declarations.

int i, j; I* correct *I
char c d; I* error 7 *I
char *s I, *s2
float k; I* error 7 detected here *I

Sometimes the compiler may not detect the error until the next
program line. A missing semicolon at the end of a #include'd file will
be detected back in the file being compiled or in another #include file.
This is a good example of why it is important to examine the context
of the error rather than to rely solely on the information provided by
the compiler error message(s).

8: syntax error in type cast

The syntax of the cast operator must be carefully observed A
common error is to omit a parenthesis:

i = 3 * (int number);
i = 3 * ((int)number);

9: array dimension must be constant

I* incorrect usage *I
I* correct usage *I

The dimension given an array must be a constant of type char, int,
or unsigned. This value is specified in the declaration of the array. See
error 10.

10: array size must be positive integer

The dimension of an array is required to be greater than zero. A
dimension less than or equal to zero becomes 1 by default. As can be
seen from the following example, specifying a dimension of zero is not
the same as leaving the brackets empty.

- err.S -

Aztec C

char badarray[O];
extern char goodarray(];

Compiler Error Messages

/* meaningless *I
I* good *I

Empty brackets are used when declaring an array that has been
defined (given a size and storage in memory) somewhere else (that is,
outside the current function or file). In the above example, goodarray
is external. Function arguments should be declared with a null
dimension:

func(sl,s2)
char sl(], s2[];
{

}

11: data type too complex

This message is best explained by example:

char *******foo;

The form of this declaration implies six pointers-to-pointers. The
seventh asterisk indicates a pointer to a char. The compiler is unable to
keep track of so many "levels". Removing just one of the asterisks will
cure the error; all that is being declared in any case is a single two-byte
pointer. However it is to be hoped that such a construct will never be
needed

12: illegal pointer referen~

The type of a pointer must be either int or unsigned. This is why
you might get away with not declaring pointer arguments in functions
like /open which return a pointer; they default to int. When this error
is generated, an expression used as a pointer is of an invalid type:

char c;
int var;
int varaddress;
varaddress = &var;
*(varaddress) = 'c';
*(expression) = 1 0;

*c = 'c';

13: internal [see error 4]

14: internal (see error 4]

15: storage class oonflict

I* any variable *I

I* valid since addresses *I
I* can fit in an int *I
/* in general, expression
must be an int or unsigned *I
/*error 12 *I

Only automatic variables and function parameters can be specified
as register.

This error can be caused by declaring a static register variable. While
structure members cannot be given a storage class at all, function

- err.9-

Compiler Error Messages Aztec C

arguments can be specified only as register.

A register int i declaration is not allowed outside a function--it will
generate error 89 (see below).

16: data type conflict

The basic data types are not numerous, and there are not many
ways to use them in declarations. The possibilities are listed below.

This error code indicates that two incompatible data types were
used in conjunction with one another. For example, while it is valid to
say long int i, and unsigned int j, it is meaningless to use double int k or
float char c. In this respect, the compiler checks to make sure that int,
char. float and double are used correctly.

I data type
I char
I int I unsigned/ unsigned int
1 short
1 long/long integer
1 float
jlong float/ double

17: Unsupported data type

interpretation
character
integer
unsigned integer
integer
long integer
floating point number
double precision float

size(bytes)
1
2
2
2
4
4
8

This message occurs only when data types are used which are
supported by the extended C language, such as the enum data type.

18: data type conflict

This message indicates an error in the use of the long or unsigned
data type. long can be applied as a qualifier to int and float. unsigned
can be used with char, int and long.

long i;
long float d;
unsigned u;
unsigned char c;
unsigned long I;
unsigned float f;

19: obsolete

/*a long int */
!* a double • I
/* an unsigned int *I

!*error 18 *I

Error codes interpreted as obsolete do not occur in the current
version of the compiler. Some simply no longer apply due to the
increased adaptability of the compiler. Other error codes have been
translated into full messages sent directly to the screen. If you are
using an older version of the product and have need of these codes,
please contact Manx for information.

- err.10-

Aztec C Compiler Error Messages

20: structure redeclaration

The compiler is able to tell you if a structure has already been
defined This message informs you that you have tried to redefine a
structure.

21: missing }

The compiler expects to find a comma after each member in the
list of fields for a structure initialization. After the last field, it expects
a right (close) brace.

For example, the following program fragment will generate error
21, since the initialization of the structure named 'harry' doesn't have
a closing brace:

struct sam {
int bone;
char license[10];

} harry= {
I,
"23-4-1984";

22: syntax error in structure dedaration

The compiler was unable to find the left (open) brace which follows
the tag in a structure declaration. In the example for error 21, "sam" is
the structure tag. A left brace must follow the keyword struct if no
structure tag is specified

23: incorrect type for library function (Apprentice Conly)

For Apprentice C, this error means that your program has either
explicitly or implicitly incorrectly declared the type of a function
that's in the run-time system. For example, you will get this error if
you call the run-time system function sqrt without declaring that it
returns a double.

23: obsolete (Other Aztec C Compilers)

For Compilers other than Apprentice C, this error should not
occur.

24: need right parenthesis or comma

The right parenthesis is missing from a function call Every
function call must have an argument list enclosed by parentheses even
if the list is empty. A right parenthesis is required to terminate the
argument list

In the following example, the parentheses indicate that getchar is a
function rather than a variable.

getchar();

- err.ll-

Compiler Error Messages Aztec C

This is the equivalent of

CALL getchar

which might be found in a more explicit programming language. In
general, a function is recognized as a name followed by a left
parenthesis.

With the exception of reserved words, any name can be made a
function by the addition of parentheses. However, if a previously
defined variable is used as a function name, a compilation error will
result.

Moreover, a comma must separate each argument in the list. For
example, error 24 will also result from this statement

funccall(argl, arg2 arg3);

25: structure member name expected here

The symbol name following the dot operator or the arrow must be
valid A valid name is a string of alphanumerics and underscores. It
must begin with an alphabetic (a letter of the alphabet or an
underscore). In the last line of the following example, "(salary)" is not
valid because '(' is not an alphanumeric.

empptr = &anderson;
empptr->salary = 12000;
(*empptr).salary = 12000;
anderson.salary = 12000;
empptr = &anderson.;
empptr-> = 12000;
anderson.(salary) = 12000;

26: must be structure/union member

I* these three lines *I
I* are*/
/* equivalent *I
!* error 25 *I
/* error 25 *I
/* error 25 *I

The defined structure or union has no member with the name
specified If the -S option was specified, no previously defined
structure or union has such a member either.

Structure members cannot be created at will during a program. Like
other variables, they must be fully defined in the appropriate
declaration list Unions provide for variably typed fields, but the full
range of desired types must be anticipated in the union declaration.

27: illegal type cast

It is not possible to cast an expression to a function, a structure, or
an array. This message may also appear if a syntax error occurs in the
expression to be cast

structure sam { ... } thorn;
thorn = (struct sam)(expression); /* error 27 *I

- err.12 -

Aztec C Compiler Error Messages

28: incompatible structures

C permits the assignment of one structure to another. The compiler
will ensure that the two structures are identical. Both structures must
have the same structure tag. For example:

struct sam harry;
struct sam thorn;

harry = thorn;

29: illegal use of structure

Not all operators can accept a structure as an operand Also,
structures cannot be passed as arguments. However, it is possible to
take the address of a structure using the ampersand (&), to assign
structures, and to reference a member of a structure using the dot
operator.

30: missing : in ? conditional expression

The standard syntax for this operator is:

expression ? statementl : statement2

It is not desirable to use ?: for extremely complicated expressions; its
purpose lies in brevity and clarity.

31: call of non-function

The following represents a function call:

symbol(arg1, arg2, ... , argn);

where "symbol" is not a reserved word and the expression stands in the
body of a function. Error 31, in reference to the expression above,
indicates that "symbol" has been previously declared as something
other than a function.

A missing operator may also cause this error:

a(b +c); I* error 31 *I
a* (b + c); I* intended* I

The missing '*' makes the compiler view "a()" as a function call.

32: illegal pointer calculation

Pointers may be involved in three calculations. An integral value
can be added to or subtracted from a pointer. Pointers to objects of the
same type can be subtracted from one another and compared to one
another. (For a formal definition, see Kernighan and Ritchie pp. 188-
189.) Since the comparison and subtraction of two pointers is
dependent upon pointer size, both operands must be the same size.

- err.13-

Compiler Error Messages Aztec C

33: illegal type

The unary minus (-) and bit complement (-) operators cannot be
applied to structures, pointers, arrays and functions. There is no
reasonable interpretation for the following:

int function();
char array[12];
struct sam { . .. } harry;
a= -array; I*? *I
b =-harry;
c = -function & WRONG;

34: undefined symbol

The compiler will recognize only reserved words and names which
have been previously defined This error is often the result of a
typographical error or due to an omitted declaration.

35: typedef not allowed here

Symbols which have been defined as types are not allowed within
expressions. The exception to this rule is the use of sizeo f(ex pression)
and the cast operator. Compare the accompanying examples:

struct sam {
int i;

} harry;
typedef double bigfloat;
typedef struct sam foo;

j = 4 * bigfloat f;
k = &foo;
x = sizeof(bigfloat);
y = sizeof(foo);

j* error 35 *I
I* error 35 *I

I* good *I
The compiler will detect two errors in this code. In the first

assignment, a typecast was probably intended; compare error 8. The
second assignment makes reference to the address of a structure type.
However, the structure type is just a template for instances of the
structure (such as "harry"). It is no more meaningful to take the
address of a structure type than any other data type, as in &int.

36: no more expression space

This message indicates that the expression table is not large enough
for the compiler to process the source code. It is necessary to
recompile the file using the -E option to increase the number of
available entries in the expression table. See the description of the
compiler in the manual.

- err.14-

Aztec C Compiler Error Messages

37: invalid expression

This error occurs in the evaluation of an expression containing a
unary operator. The operand either is not given or is itself an invalid
expression.

Unary operators take just one operand; they work on just one
variable or expression. If the operand is not simply missing, as in the
example below, it fails to evaluate to anything its operator can accept.
The unary operators are logical not (!), bit complement (-), increment
(++), decrement (--), unary minus (-), typecast, pointer-to (*),
address-of(&), and sizeof.

if(!) ;

38: no auto. aggregate initialization

It is not permitted to initialize automatic arrays and structures.
Static and external aggregates may be initialized, but by default their
members are set to zero.

char array[5] = {'a', 'b', 'c', 'd' };
function()
{

}

static struct sam {
int bone;
char license[10];

} harry= {
1,
II 123-4-1984"

};
char autoarray[2] = { •r, 'g' }; /*no good*/
extern char array[];

There are three variables in the above example, only two of which
are correctly initialized The variable "array" may be initialized
because it is external. Its first four members will be given the
characters as shown. The fifth member will be set to zero.

The structure "harry" is static and may be initialized Notice that
"license" cannot be initialized without first giving a value to "bone".
There are no provisions in C for setting a value in the middle of an
aggregate.

The variable "autoarray" is an automatic array. That is, it is local to
a function and it is not declared to be static. Automatic variables
reappear automatically every time a function is called, and they are
guaranteed to contain garbage. Automatic aggregates cannot be
initialized

- err.lS-

Compiler Error Messages

39: obsolete [see error 19]

40: internal [see error 4]

41: initializer not a constant

Aztec C

In certain initializations, the expression to the right of the equals
sign (=) must be a constant. Indeed, only automatic and register
variables may be initialized to an expression. Such initializations are
meant as a convenient shorthand to eliminate assignment statements.
The initialization of statics and globals actually occurs at link-time, and
not at run-time.

{
inti= 3;
static int j = (2 + i); !* illegal *I

}

42: too many initializers

There were more values found in an initialization than array or
structure members exist to hold them. Either too many values were
specified or there should have been more members declared in the
aggregate definition.

In the initialization of a complex data structure, it is possible to
enclose the initializer in a single set of braces and simply list the
members, separated by commas. If more than one set of braces is used,
as in the case of a structure within a structure, the initializer must be
entirely braced

struct {
struct {

char array[];
} substruct;

} superstruct =

version 1:

version 2:

{

};

{

"abcdefghij"

{

}
{ 'a' 'b' 'c' '1'' 'J"} ' ' , ... , '

};

In version I, the initializers are copied byte-for-byte onto the
structure, superstrnct.

- err.16-

Aztec C Compiler Error Messages

Another likely source of this error is in the initialization of arrays
with strings, as in:

char array[10] = "abcdefghij";

This will generate error 42 because the string constant on the right
is null-terminated The null terminator (' ' or OxOO) brings the size of
the initializer to 11 bytes, which overflows the ten-byte array.

43: undefined structure initialization

An attempt has been made to assign values to a structure which has
not yet been defined

struct sam { ... };
struct dog sam = { 1, 2, 3}; /* error 43 *I

44: obsolete [see error 19]

45: bad declaration syntax

This error code is an all purpose means for catching errors in
declaration statements. It indicates that the compiler is unable to
interpret a word in an external declaration list.

46: missing dosing brace

All the braces did not pair up at the end of compilation. If all the
preceding code is correct, this message indicates that the final closing
brace to a function is missing. However, it can also result from a brace
missing from an inner block

Keep in mind that the compiler accepts or rejects code on the basis
of syntax, so that an error is detected only when the rules of grammar
are violated This can be misleading. For example, the program below
will generate error 46 at the end even though the human error
probably occurred in the while loop several lines earlier.

As the code appears here, every statement after the left brace in
line 6 belongs to the body of the while loop. The compilation error
vanishes when a right brace is appended to the end of the program, but
the results during run time will be indecipherable because the brace
should be placed at the end of the loop.

It is usually best to match braces visually before running the
compiler. A C-oriented text editor makes this task easier.

- err.17-

Compiler Error Messages

main()
{

}

inti, j;
char array[80];

gets(array);
i = 0;
while (array[i]) {

putchar(array[i]);
i++"

for (i,:O; array[i];i++) {

}

for (j=i +I; array[j]; j++) {
printf("elements %d and o/od are", i, j);
if (array[i] == array[j])

printf("the same\n");
else

printf("different\n");
}
putchar('\n');

47: open failure on include file

Aztec C

When a file is #included, the compiler will look for it in a default
area (see the manual description of the compiler). This message will be
generated if the file could not be opened An open failure usually
occurs when the included file does not exist where the compiler is
searching for it Note that a drive specification is allowed in an
include statement, but this diminishes flexibility somewhat.

48: illegal symbol name

This message is produced by the preprocessor, which is that part of
the compiler which handles lines which begin with a pound sign (#).
The source for the error is on such a line. A legal name is a string
whose first character is an alphabetic (a letter of the alphabet or an
underscore). The succeeding characters may be any combination of
alphanumerics (alphabetics and numerals). The following symbols will
produce this error code:

2nd time,
dont do this! --

49: multiply defined symbol

This message warns that a symbol has already been declared and
that it is illegal to redeclare it. The following is a representative
example:

int i, j, k, i; I* illegal *I

- err.18-

Aztec C Compiler Error Messages

SO: missing bracket

This error code is used to indicate the need for a parenthesis,
bracket or brace in a variety of circumstances.

51: lvalue required

Only /values are are allowed to stand on the left-hand side of an
assignment. For example:

int num;
num = 7;

They are distinguished from rvalues, which can never stand on the
left of an assignment, by the fact that they refer to a unique location
in memory where a value can be stored An /value may be thought of
as a bucket into which an rvalue can be dropped Just as the contents
of one bucket can be passed to another, so can an lvalue y be assigned
to another lvalue, x:

#define NUMBER 512
X= y;
1024 = z;
NUMBER= x;

I* wrong; ljrvalues are reversed *I
I* wrong; NUMBER is still an rvalue *I

Some operators which require /values as operands are increment
(++), decrement(--), and address-of(&). It is not possible to take the
address of a register variable as was attempted in the following
example:

register int i, j;
i = 3;
j = &i;

52: obsolete [see error 19]

53: multiply defined label

On occasions when the goto statement is used, it is important that
the specified label be unique. There is no criterion by which the
computer can choose between identical labels. If you have trouble
finding the duplicate label, use your text editor to search for all
occurrences of the string.

54: too many labels

The compiler maintains an internal table of labels which will
support up to several dozen labels. Although this table is fixed in size,
it should satisfy the requirements of any reasonable C program. C was
structured to discourage extravagance in the use of goto's. Strictly
speaking, goto statements are not required by any procedure in C; they
are primarily recommended as a quick and simple means of exiting
from a nested structure.

- err.19-

Compiler Error Messages Aztec C

This error indicates that you should significantly reduce the
number of goto's in your program.

55: missing quote

The compiler found a mismatched double quote (") in a #define
preprocessor command Unlike brackets, quotes are not paired
innermost to outermost, but sequentially. So the first quote is
associated with the second, the third with the fourth, and so on. Single
quotes (') and double quotes (") are entirely different characters and
should not be confused The latter are used to delimit string constants.
A double quote can be included in a string by use of a backslash, as in
this example:

"this is a string"
"this is a string with an embedded quote: \". "

56: missing apostrophe

The compiler found a mismatched single quote or apostrophe (') in
a #define preprocessor command Single quotes are paired sequentially
(see error 55). Although quotes can not be nested, a quote can be
represented in a character constant with a backslash:

char c = '\";

57: line too long

!* c is initialized to
single quote *I

Lines are restricted in length by the size of the buffer used to hold
them. This restriction varies from system to system. However, logical
lines can be infinitely long by continuing a line with a backslash
newline sequence. These characters will be ignored

58: illegal# enoountered

The pound sign (#) begins each command for the preprocessor:
#include, #define, #if, #ifdef, #ifndef, #else, #endif, #asm, #endasm,
#line and #undef. These symbols are strictly defined The pound sign
(#) must be in column one and lower case letters are required

59: macro too long

Macros can be defined with a preprocessor command of the
following form:

#define [identifier] [substitution text]

The compiler then proceeds to replace all instances of "identifier"
with the substitution text that was specified by the #define.

This error code refers to the substitution text of a macro. Whereas
ideally a macro definition may be extended for an arbitrary number of
lines by ending each line with a backslash (), for practical purposes the
size of a macro has been limited to 255 characters.

- err.20-

Aztec C Compiler Error Messages

60: obsolete [see error 19]

61: reference of member of undefined structure

Occurs only under compilation without the -S option. Consider the
following example:

int bone;
struct cat {

int toy;
} manx;
struct dog *samptr;
manx.toy = I;
bone= samptr->toy; j* error 61 */

This error code appears most often in conjunction with this kind of
mistake. It is possible to define a pointer to a structure without having
already defined the structure itself. In the example, samptr is a
structure pointer, but what form that structure ("dog") may take is still
unknown. So when reference is made to a member of the structure to
which samptr points, the compiler replies that it does not even known
what the structure looks like.

The -S compiler option is provided to duplicate the manner in
which earlier versions of UNIX treated structures. Given the example
above, it would make the compiler search all previously defined
structures for the member in question. In particular, the value of the
member "toy" found in the structure "manx" would be assigned to the
variable "bone". The -S option is not recommended as a short cut for
defining structures.

62: function body must be compound statement

The body of a function must be enclosed by braces, even though it
may consist of only one statement:

function()
{

return I;
}

This error can also be caused by an error inside a function
declaration list, as in:

func(a, b)
int a; chr b;
{

63: undefined label

A goto statement is meaningless if the corresponding label does
not appear somewhere in the code. The compiler disallows this since it
must be able to specify a destination to the computer.

- err.21 -

Compiler Error Messages Aztec C

It is not possible to goto a label outside the present function (labels
are local to the function in which they appear). Thus, if a label does
not exist in the sanie procedure as its corresponding goto, this message
will be generated

64: inappropriate arguments

When a function is declared (as opposed to defined), it is poor
syntax to specify an argument list

function(string)
char *string;
{

}

char *funcl();
double func2(x,y);

I* correct *I
I* wrong *I

In this example, function() is being· defined, but funcl() and
func2() are being declared

65: illegal cr missing argument name

The compiler has found an illegal name in a function argument list.
An argument name must conform to the same rules as variable names,
beginning with an alphabetic (letter or underscore) and continuing
with any sequence of alphanumerics and underscores. Names must not
coincide with reserved words.

66: expected comma

In an argument list, arguments must be separated by commas.

67: invalid else

An else was found which is not associated with an if statement. else
is bound to the nearest if at its own level of nesting. So if-else pairings
are determined by their relative placement in the code and their
grouping by braces.

if(...) {

if(...) {

} else if(...)

} else {

}

The indentation of the source text should indicate the intended
structure of the code. Note that the indentation of the if and else-if
means only that the programmer wanted both conditionals to be nested
at the same level, in particular one step down from the presiding if

- err.22-

Aztec C Compiler Error Messages

statement But it is the placement of braces that determines this for the
compiler. The example above is correct, but probably does not
conform to the expectations revealed by the indentation of the else
statement As shown here, the else is paired with the first if, not the
second

68: syntax error

The keywords used in declaring a variable, which specify storage
class and data type, must not appear in an executable statement. In
particular, all local declarations must appear at the beginning of a
block, that is, directly following the left brace which delimits the body
of a loop, conditional or function. Once the compiler has reached a
non-declaration, a keyword such as char or int must not lead a
statement; compare the use of the casting operator:

func()
{

inti;
char array(12];
float k = 2.03;

i = 0;
int m;
j = i + 5;
i = (int) k;
if (i) {

}

inti= 3;
j = i;
printf("%d" ,i);

I* error 68 *I

I* correct *I

printf("%d0Axl\n" ,i,j);
}

This trivial function prints the values 3, 2 and 3. The variable i
which is declared in the body of the conditional (if) lives only until
the next right brace; then it dies, and the original i regains its identity.

69: missing semicolon

A semicolon is missing from the end of an executable statement.
This error code is subject to the same vagaries as its cousin, error 7. It
will remain undetected until the following line and is often spuriously
caused by a previous error.

70: bad goto syntax

Compare your use of goto with an example. This message says that
you did not specify where you wanted to goto with a label:

- err.23-

Compiler Error Messages

goto label;

label:

Aztec C

It is not possible to goto just any identifier in the source code;
labels are special because they are followed by a colon.

71: statement syntax error in do-while

The body of a do-while may consist of one statement or several
statements enclosed in braces. A while conditional is required after the
body of the loop. This is true even if the loop is infinite, as it is
required by the rules of syntax. After typing in a long body, don't
forget the while conditional.

72: 'for' syntax error: missing first semicolon

This error focuses on another control flow statement, the for. The
keyword, for, must be followed by parentheses. In the parentheses
belong three expressions, any or all of which may be null. For the sake
of clarity, C requires that the two semicolons which separate the
expressions be retained, even if all three expressions are empty.

for (; I* an infinite loop which does *I
I* absolutely nothing *I

Error 72 signifies that the compiler didn't find the first semicolon
within the parentheses.

73: 'for' syntax error: missing second semicolon

This error is similar to error 72; it means that the compiler didn't
find the second semicolon within the parenthesized expression
following the 'for'.

74: case value must be integer constant

Strictly speaking, each value in a case statement must be a constant
of one of three types: char, int or unsigned. This is similar to the rule
for a switched variable. In the following example, a float must be cast
to an int in order to be switched; however, notice that the programmer
did not check his case statements. The second case value is invalid, and
the code will not compile.

- err.24-

Aztec C

float k = 5.0;
switch((int)k) {
case 4:

printf("good case value\n");
break;

case 5.0:

}

printf("bad case value\n");
break;

Compiler Error Messages

The programmer must replace "case 5.0:" with "case 5".

75: missing colon on case

This should be straightforward If the compiler accepts a case value,
a colon should follow it A semi-colon must not be accidently entered
in its place.

76: too many cases in switch

The compiler reserves a limited number of spaces in an internal
table for case statements. If a program requires more cases than the
table initially allows, it becomes necessary to tell the compiler what the
table value should be changed to. It is not necessary to know exactly
how many are needed; an approximation is sufficient, depending on
the requirements of the situation.

77: case outside of switch

The keyword. case, belongs to just one syntactic structure, the
switch. If "case" appears outside the braces which contain a switch
statement, this error is generated Remember that all keywords are
reserved. so that they cannot be used as variable names.

78: missing colon

This message indicates that a colon is missing after the keyword,
default. Compare error 75.

79: duplicate default

The compiler has found more than one default in a switch. Switch
will compare a variable to a given list of values. But it is not always
possible to anticipate the full range of values which the variable may
take. Nor is it feasible to specify a large number of cases in which the
program is not particularly interested

So C provides for a default case. The default will handle all those
values not specified by a case statement It is analogous to the else
companion to the conditional, if. Just as there is one else for every if,
only one default case is allowed in a switch statement. However, unlike
the else statement, the position of a default is not crucial; a default can
appear anywhere in a list of cases.

- err.25-

Compiler Error Messages Aztec C

80: default outside of switch

The keyword, default, is used just like case. It must appear within
the brackets which delimit the switch statement

81: breaklamtinue error

Break and continue are used to skip the remainder of a loop in
order to exit or repeat the loop. Break will also end a switch statement.
But when the keywords, break or continue, are used outside of these
contexts, this message results.

82: illegal character

Some characters simply do not make sense in a C program, such as
'$' and'@'. Others, for instance the pound sign(#), may be valid only
in particular contexts.

83: too many nested includes

#includes can be nested, but this capacity is limited The compiler
will balk if required to descend more than three levels into a nest. In
the example given, file D is not allowed to have a #include in the
compilation of file A.

~A ~B ~C ~D
#include "B'' #include "C" #include "D"

84: too many array dimensions

An array is declared with too many dimensions. This error should
appear in conjunction with error 11.

85: not an argument

The compiler has found a name in the declaration list that was not
in the argument list. Only the converse case is valid, i.e., an argument
can be passed and not subsequently declared

86: null dimension in array

In certain cases, the compiler knows how to treat multidimensional
arrays whose left-most dimensions are not given in its declaration.
Specifically, this is true for an extern declaration and an array
initialization. The value of any dimension which is not the left-most
must be given.

extern char array(](12];
extern char badarray[5][];

87: invalid character oonstant

I* correct • I
j* wrong *I

Character constants may consist of one or two characters enclosed
in single quotes, as 'a' or 'ab'. There is no analog to a null string, so"
(two single quotes with no intervening white space) is not allowed
Recall that the special backslash characters (\b, \n, \t etc.) are singular,

- err.26-

Aztec C Compiler Error Messages

so that the following are valid: '\n', '\na', 'a\n'; 'aaa' is invalid

88: not a structure

Occurs only under compilation without the -S option. A name used
as a structure does not refer to a structure, but to some other data type.

inti;
i.member = 3;

89: invalid storage class

I* error 88 *I

A globally defined variable cannot be specified as register. Register
variables are required to be local.

90: symbol rededared

A function argument has been declared more than once.

91: illegal use of floating point type

Aoating point numbers can be negated (unary minus), added,
subtracted, multiplied, divided and compared; any other operator will
produce this error message.

92: illegal type conversion

This error code indicates that a data type conversion, implicit in
the code, is not allowed, as in the following piece of code:

inti;
float j;
char *ptr;

i=j+ptr;

The diagram shows how variables are converted to different types
in the evaluation of expressions. Initially, variables of type char and
short become int, and float becomes double. Then all variables are
promoted to the highest type present in the expression. The result of
the expression will have this type also. Thus, an expression containing
a float will evaluate to a double.

hierarchy of types:

double <-- float
long
unsigned
int <-- short, char

This error can also be caused by an attempt to return a structure,
since the structure is being cast to the type of the function, as in:

- err.27-

Compiler Error Messages

int func()
{

}

struct tag sam;
return sam;

93: illegal expression type for switch

Aztec C

Only a char, int or unsigned variable can be switched See the
example for error 74.

94: bad argument to define

An illegal name was used for an argument in the definition of a
macro. For a description of legal names, see error 65.

95: no argument list

When a macro is defined with arguments, any invocation of that
macro is expected to have arguments of corresponding form. This
error code is generated when no parenthesized argument list was found
in a macro reference.

#define getchar() getc(stdin)

c = getchar; I* error 95 *I
96: missing argument to macro

Not enough arguments were found in .an invocation of a macro.
Specifically, a "double comma" will produce this error:

#define reverse(x,y,z) (z,y,x)

func(reverse(i,k));

97: obsolete [see error 19]

98: not enough args in macro reference

The incorrect number of arguments was found in an invocation of
a previously defined macro. As the examples show, this error is not
identical to error 96.

#define exchange(x,y) (y,x)

func(exchange(i)); I* error 98 *I
99: internal

100: internal

[see error 4]

[see error 4]

101: missing close parenthesis on macro reference

A right (closing) parenthesis is expected in a macro reference with
arguments. In a sense, this is the complement of error 95; a macro
argument list is checked for both a beginning and an ending.

- err.28-

Aztec C Compiler Error Messages

102: macro arguments too long

The combined length of a macro's arguments is limited This error
can be resolved by simply shortening the arguments with which the
macro is invoked

103: #else with no #if

Correspondence between #if and #else is analogous to that which
exists between the control flow statements, if and else. Obviously,
much depends upon the relative placement of the statements in the
code. However, #if blocks must always be terminated by #endif, and
the #else statement must be included in the block of the #if with
which it is associated For example:

#ifERROR> 0
printf("there was an error\n");

#else
printf("no error this time\n");

#endif

#if statements can be nested, as below. The range of each #if is
determined by a #endif. This also excludes #else from #if blocks to
which it does not belong:

#ifdef JANl
printf("happy new year!\n");

#if sick
printf("i think i'll go home now\n");

#else
printf("i think i'll have another\n");

#endif
#else

printf("i wonder what day it is\n");
#endif

If the first #endif was missing, error 103 would result And without
the second #endif, the compiler would generate error 107.

104: #endif with no #if

#endif is paired with the nearest #if, #ifdef or #ifndef which
precedes it (See error 103.)

105: #endasm with no #asm

#endasm must appear after an associated #asm. These compiler
control lines are used to begin and end embedded assembly code. This
error code indicates that the compiler has reached a #endasm without
having found a previous #asm. If the #asm was simply missing, the
error list should begin with the assembly code (which are undefined
symbols to the compiler).

- err.29-

Compiler Error Messages Aztec C

106: #asm within #asm block

There is no meaningful sense in which in-line assembly code can be
nested, so the #asm keyword must not appear between a paired
#asml#endasm. When a piece of in-line assembly is augmented for
temporary purposes, the old #asm and #endasm can be enclosed in
comments as place-holders.

#asm
I* temporary asm code *I

I* #asm old beginning *I
I* more asm code *I

#endasm

107: missing #endif

A #endif is required for every #if, #ifdef and #ifndef, even if the
entire source file is subject to a single conditional compilation. Try to
assign pairs beginning with the first #endif. Backtrack to the previous
#if and form the pair. Assign the next #endif with the nearest
unpaired #if. When this process becomes greatly complicated, you
might consider rethinking the logic of your program.

108: missing #endasm

In-line assembly code must be terminated by a #endasm in all
cases. #asm must always be paired with a #endasm.

109: #if value must be integer constant

#if requires an integral constant expression. This allows both
integer and character constants, the arithmetic operators, bitwise
operators, the unary minus (-) and bit complement, and comparison
tests.

Assuming all the macro constants (in capitals) are integers,

#if DIFF >= 'A'-'a'
#if (WORD &= -MASK) >> 8
#if MAR I APR I MAY

are all legal expressions for use with #if.

110: invalid use of oolon operator

The colon operator occurs in two places: 1. following a question
mark as part of a conditional, as in (flag ? 1 : 0); 2. following a label
inserted by the programmer or following one of the reserved labels,
case and default.

111: illegal use of a void expression

This error can be caused by assigning a void expression to a
variable, as in this example:

- err.30-

Aztec C

void func();
int h;

h = func(arg);

112: illegal use of function pointer

For example,

int (*funcptr) ();

funcptr++;

Compiler Error Messages

funcptr is a pointer to a function which returns an integer.
Although it is like other pointers in that it contains the address of its
object, it is not suject to the rules of pointer arithmetic. Otherwise,
the offending statement in the example would be interpreted as adding
to the pointer the size of the function, which is not a defined value.

113: duplicate case in switch

This simply means that, in a switch statement, there are two case
values which are the same. Either the two cases must be combined into
one, or one of them must be discarded For instance:

switch (c) {
case NOOP:

return (0);
case MULT:

return (x * y);
case DIY:

return (x I y);
case ADD:

return (x + y);
case NOOP:
default

return;
}

The case of NOOP is duplicated, and will generate an error.

114: macro redefined

For example,

#define islow(n) (n>=0&&n<5)

#define islow(n) (n>=0&&n<=5)

The macro, islow, is being used to classify a numerical value. When
a second definition of it is found, the compiler will compare the new
substitution string with the previous one. If they are found to be
different, the second definition will become current, and this error
code will be produced

- err.31-

Compiler Error Messages Aztec C

In the example, the second definition differs from the first in a
single character, '='. The second definition is also different from this
one:

#define islow(n) n>=0&&n<=5

since the parentheses are missing.

The following lines will not generate this error:

#define NULL 0

#define NULL 0

But these are different from:

#define NULL ' '

In practice, this error message does not affect the compilation of
the source code. The most recent "revision" of the substitution string is
used for the macro. But relying upon this fact may not be a wise habit.

115: keyword redefined

Keywords cannot be defined as macros, as in:

#define int foo

If you have a variable which may be either, for instance, a short or
a long integer, there are alternative methods for switching between the
two. If you want to compile the variable as either type of integer,
consider the following:

#ifdef LONGINT
long i;

#else
short i;

#endif

Another possibility is through a typedej:

#ifdef LONGINT
typedef long V ARTYPE;

#else
typedef short V ARTYPE;

#endif

VARTYPE i;

116: field width must be > 0

A field in a bit field structure can't have a negative number of bits.

117: invalid 0 length field

A field in a bit field structure can't have zero bits.

- err.32 -

Aztec C Compiler Error Messages

118: field is too wide

A field in a bit field structure can't have more than 16 bits.

119: field not allowed here

A bit field definition can only be contained in a structure.

120: invalid type for field

The type of a bit field can only be of type int of unsigned int.

121: ptrjint conversion

The compiler issues this warning message if it must implicitly
convert the type of an expression from pointer to int or long, or vice
versa

If the program explicitly casts a pointer to an int this message won't
be issued However, in this case, error 122 may occur.

For example, the following will generate warning 121:

char *cp;
int i;

i = cp; /* implicit conversion of char * to int *I
When the compiler issues warning 121, it will generate correct code

if the sizes of the two items are the same.

122: ptr & int not same size

If a program explicitly casts a pointer to an int, and the sizes of the
two items differ, the compiler will issue this warning message. The
code that's generated when the converted pointer is used in an
expression will use only as much of the least significant part of the
pointer as will fit in an int.

123: function ptr & ptr not same size

If a program explicitly casts a pointer to a data item to be a pointer
to a function, or vice versa, and the sizes of the two pointers differ,
the compiler issues this warning message.

If the program doesn't explicitly request the conversion, warning
124 will be issued instead of warning 123.

124: invalid ptr/ptr assignment

If a program attempts to assign one pointer to another without
explicitly casting the two pointers to be of the same type, and the types
of the two pointers are in fact different, the compiler will issue this
warning message.

The compiler will generate code for the assignment, and if the sizes
of the two pointers are the same, the code will be correct. But if the

- err.33-

Compiler Error Messages Aztec C

sizes differ, the code may not be correct.

125: too many su~cripts or indirection on integer

This warning message is issued if a program attempts to use an
integer as a pointer; that is, as the operand of a star operator.

If the sizes of a pointer and an int are the same, the generated code
will access the correct memory location, but if they don't, it won't.

For example,

char c;
long g;
Ox5c=O; j warning 125, because Ox5c is an int */
c[i]=O; /*warning 125, because c+i is an int */
g(i]=O; /*error 12, because g+i is a long*/

- err.34-

Aztec C Compiler Error Messages

3. Fatal Compiler Error Messages

If the compiler encouters a "fatal" error, one which makes further
operation impossible, it will send a message to the screen and end the
compilation immediately.

Out of disk space!

There is no room on the disk for the output file of the compiler.
Previous disk files will not be overwritten by the compiler's assembly
language output To make room on the disk, it is usually sufficient to
remove unneeded files from the disk

unknown option:

The compiler has been invoked with an option letter which it does
not recognize. The manual explicitly states which options the compiler
will accept The compiler will specify the invalid option letter.

duplicate output file

If an output file name has been specified with the -o option and
that file already exists on the disk, the compiler will not overwrite it.
-0 must specify a new file.

too few arguments for -o option

The compiler expected to find the output filename following the "
o", but didn't find it The output file name must follow the option
letter and the name of the file to be compiled must occur last in the
command line.

Open failure on input

The input file specified in the command line does not exist on the
disk or cannot be opened A path or drive specification can be
included with a filename according to the operating system in use.

No input!

While the compiler was able to open the input file given in the
command line, that file was found to be empty.

Open failure on output

The compiler was unable to create an output file. On some
systems, this error could occur if a disk's directory is full

Local table full! (use -L)

The compiler maintains an internal table of the local variables in
the source code. If the number of local symbols in use exceeds the
available entries in the table at any time during compilation, the
compiler will print this message and quit The default size of the local
symbol table (40 entries) can be changed with the -L option for the

- err.3S-

Compiler Error Messages Aztec C

compiler. Local variables are those defined within braces, i.e., in a
function body or in a compound statement. The scope of a local
variable is the body in which it is defined, that is, it is defined until
the next right brace at its own nesting level

Out of memory!

Since the compiler must maintain various tables in memory as well
as manipulate source code, it may run out of memory during
operation. The more immediate solution is to vary the sizes of the
internal tables using the appropriate compiler options. Often, a
compilation will require fewer than the default number of entries in a
particular table. By reducing the size of that table, memory space is
freed up during compile time. The amount of memory used while
compiling does not affect the size or content of the assembly or object
file output. If this stategy fails to squeeze the compilation into the
available memory, the only solution is to divide the source file into
modules which can be compiled separately. These modules can then
be linked together to produce a single executable file.

- err.36-

Aztec C6S for the Apple I I ProDOS
Venlon 3.2b

Release Document, ed 2
15 July 1986

This release document introduces the features of Aztec C65, v 3.2b,
for the Apple I 1. It's divided into the following sections:

1. Machine Requirements;

2. Known Bugs;

3. Packaging

4. Technical Support

If changes have been made to Aztec C65 since this release
document was printed, information about the changes will be in a file
named read.me on the first distribution disk.

1. Machine Requirements

Using Aztec C65, programs can be developed on the Apple I I
machines whose configurations are listed below.

Created programs will run on machines having these
configurations. They may also run, with some limitations., on
machines having other configurations; for example, on an Apple I I
Plus in 80 column mode, a program may be able to write simple text to
the console, but may not be able to use the Aztec C65 screen
functions.

Supported configurations:

* Apple I lc, in either 40- or 80-column mode.

* Apple I I e, in 40-colurnn mode or, if Apple's 80-column card
is installed, in 80-column mode.

* Apple I I or I I Plus in 40-column mode that meets the
following requirements: (1) it must support keyboard entry of
lower case characters (this can be provided by installing the
single wire shift key mod); (2) it must support console display
of the full set of displayable ASCII characters (this can be
provided by installing a lower-case adaptor).

Development must be done under ProDOS on an Apple that has at
least two disk drives.

- 1 -

15 July 86 Aztec C6S, v 3.2b, Rei Doc, ed 2

2. Known bugs

The following bugs are known to exist in Aztec C65, v3.2b:

* The convert utility doesn't correctly transfer an overlay file
from ProDOS to DOS 3.3. If the type of the overlay file on
ProDOS is TXT, which is the type given to it by the linker,
the file can't be read under DOS 3.3 by the overlay loader.
And if the file is of another type, convert adds four bytes onto
the front of the file, as if it was a standard program.

* On old Apple 2e's, typing the ESC key will put the console in
escape mode, rather than sending an escape character to the
program.

* There are some bugs involving bit fields. In particular,

+ Arithmetic operations on bit fields don't work,
except for operations of the form op-;

+ Assignment of a conditional expression's value to a
bit field gives error 202 For example:

3. Product Packaging

struct unit {

} *ur;
int a;

main()
{

}

unsigned a I: I;
unsigned a2: 1;

ur->al =((a== 1)? 0:1);

The following paragraphs describe the contents of the Aztec C65
disks.

The /SYSTEM Disk

PROD OS
FILER
SHELL SYSTEM
VED
VED.ARC
EXMPL.C
CRC

Pro DOS
ProDOS Filer
the SHELL
Text Editor
Text Editor: source archive
Sample C source program
File checking utility

- 2-

Aztec C6S, v3.2b, Rei Doc, ed 2

The /C£ Disk

cc
AS
CCI
ASI
-INCLUDE

The jLN Disk

LN
C.Lm

ClUB
SAMAIN.O
lMPDEV.O

The jUilL Disk

CNM
LB
OBD
ORD
SQZ
TIY
TIY.ARC

The jUilL2 Disk

ARCV
CMP
CONFIG
DIFF
GREP
HD
MKARCV

The /LIB Disk

G.Lm
GlLIB
MLIB
MI.Lm
S.LIB
SlLIB
FLT.ARC
G.ARC
S.ARC
OVLY.ARC

6502/ 65C02 Compiler
6502/65C02 Assembler
Pseudo Code Compiler
Pseudo Code Assembler
Directory of #include fiies

The linker

15 July 86

Library of non-floating point functions
(cc compiled)
Same as C.LIB, but compiled with cd
Standalone program's startup routine
Stripped-down console driver

Object module lister
Object module librarian
Object module dumper
Object module sorter
Object module squeezer
Terminal emulater
TIY source archive

Source dearchiver
File comparator
Device configurator
Source file comparator
Pattern finder
Hex dump utility
Source archive generator

Graphics functions (cc-compiled)
Graphics functions (cci-compiled)
Floating point functions (cc-compiled)
Floating point functions (cd-compiled)
Screen functions (cc-compiled)
Screen functions (cci-compiled)
Floating point functions source archive
Graphics functions source archive
Screen functions source archive
Overlay functions

- 3-

15 July 86

The /DOS33 Disk

D.Lm
DI.LID
D33ROOTA.O

DOS33.ARC
CONVERT

The I ARCV Disk

CONFIG.ARC
DEY. ARC
MCH65.ARC
MISC. ARC
PRODOS.ARC
STDIO.ARC
TIME. ARC

4. Technical support infocmatioo

Aztec C6S, l' 3.2b, Rei Doc, ed 2

DOS 3.3 functions (cc-compiled)
DOS 3.3 functions (cci-compiled)
Special startup routine
for DOS 3.3 programs
DOS 3.3 functions source archive
ProDOS-to-DOS 3.3 conversion utility

config source archive
Device driver source
6502 functions
Miscellaneous functions
ProDOS interface functions
Standard 1/0 functions
Time functions

While we do our best to ship problem free software, sometimes the
unknown does happen and problems occur. Manx has a technical
support staff ready to help you out if you should encounter problems
while using our software. At the very end of this document is a
discussion of how to make the most out of the technical support that
Manx offers. In addition, we have added problem report forms for the
reporting of any problems you may encounter with our software.

- 4-

- 1 -

Technical Support Information

Dear User of Aztec C,

We have put together a set of guidelines to help you take the most
advantage of the technical support service offered by MANX We ask
that you read and follow these guidelines to enable us to continue to
give you quality technical support

These are the guidelines...

Hme everything with)'OIL

Try to be organized. When using our phone support, have
everything you need with you at abe time you caD. Our goal is to get
you the help you need without beJing you on the phone too long.
This can save you a lot of time, and if we can keep the calls as short
as possible we can take more ca1Js in the day. This can be to your
advantage on days when we are busy md it's hard to get through.
Also, hme the following infomtlllion retldy when you call technical
support We will ask you for this iACormation rust.

• Your name. This is necessary in case we need to get back to you
with additional information.

• Phone number. In case we have additional information we will be
able to contact you. This will never be given to anyone, so you
need not worry.

• The product you are using. and the seritll number. If you have a
cross compiler please tell us both host and target. even if the
problem is with just one side of the system.

• The revision of the product you arc using. This should include a
letter after the number: ie. 3.20d or 1.06d. 1HIS IS VERY
IMPORTANT. The full version number may be found on your
distribution disks or when you run the COMPll..ER

• The operating system you are using. and also the version.

• The type of rrtllChine you are using.

• Anything interesting about your machine configuration. ie. ram
disk, hard disk, disk cache software etc.

Know whal questions you wish 10 ask.

If you call with a usage question please try to have your questions
narrowed down as much as possible. It is easier and quicker for all to
answer a specific question than general ones.

Isolate the code that caused the problem.

- 2-

If you think you have found a bug in our software, try and create
a small program that reproduces the problem. If this program is small
enough we will take it over the phone, otherwise we would prefer
that you mail it to us, using the supplied problem report, or leave it
on one of our bbs systems. Once we receive a "bug report" we will
attempt to reproduce the problem and if successful we will try to have
it fixed in the next release. If we can not reproduce the problem we
will contact you for more information.

Use your C language book and tech1Ucal manuals first.

We have no qualms about helping you with your general C
programming questions, but please check with a C language
programming book first This may answer your question quicker and
more thoroughly. Also, if you have questions about machine specific
code, ie. interrupts or dos calls, check with that machines technical
reference manual and/or operating system manual

When to expect an answer.

A normal tum around time for a question is anywhere from the 2
minutes to 24 hours, depending on the nature of the question. A few
questions like tracing compiler bugs may take a little longer. If you
can call us back the next day, or when the person you talk to in
technical support recommends, we will have an indepth answer for
you. But normally we can answer your questions immediately.

Utilize our mail-in service.

It is always easier for us to answer your question if you mail us a
letter. (We have included copies of our problem report form for your
use.) This is especially true if you've found a bug with our compiler
or other software in our package. If you do mail your question in, try
to include all of the above information, and/or a disk with the
problem. Again, please write small test programs to reproduce
possible bugs. The address for mail-in reports is P.O. Box 55,
Shrewsbury, N.J. 07701. If you have questions/problems concerning
C Prime or Apprentice C, mail them to P.O.Box 8, Shrewsbury, N.J.
07701.

Updates, Availability, Prices.

If you have any questions about updates, availability of software,
or prices, please call our order desk. They can help you better and
faster. You can reach them at..

- 3-

Outside N.J. -> 1-800-221-0440
Inside N.J.--> 1-201-542-2121 (also for outside the U.S.A)

Bulletin board system

For users of Aztec C we have a bulletin board system available.
The number is ...

1-(201)-542-2793 This is at 300/1200 bps.(all products)

Follow the questions that will be asked after you arc connected
When this is done you will be on the system with limited access. To
gain a higher access level send mail to SYSOP. Include in this
information your serial number and what product you have. Within
approximately 24 hours you should have a higher access level,
provided the serial number is valid This will allow you to look at the
various information files and upload/ download rues.

To use the bulletin board best, please do not put large (> 8 lines)
source files onto the news system, which we use for an open forum
question/answer area Instead, upload the files to the appropriate area,
and post a news item explaining the problem you are having. Also,
the smaller the test program, the quicker and easier it is for us to look
into the problem, not to mention the savings of phone time.

When you do post a news item, please date it and sign it This will be
very helpful in keeping track of questions. Try to do the same with
uploaded source files.

Phone support, number and hours.

And finally, technical support for Aztec C is available between
9:00 am and 6:00 pm eastern standard time at 1-(201)-542-1795.
Phone support is available to registered users of Aztec C with the
exception of the Apprentice C and C Prime products. For those
products, please use the mail-in support service and send
questions/problems to P.O. Box 8, Shrewsbury, N.J. 07701.

These guidelines will aid us in helping you quickly through any
roadblocks you may find in your development Thanks for your
cooperation.

Manx Software Systems
Technical Support Dept

- 1 -

Date: __ .-~ __ __, __ _

Name: -------------------
Phone #:1-()-___ -----

Company: __________________ _

Ad~e~: _______________________ __

Product : c86-PC c86-CPM86 c68k
c68k-Am-- ell CIO
c65-Pro~ C65-Dos3.3 --
cross: ___________ __

VERSION#: ____ _

Op. - sys.: ______ _

Send this form to :

Manx Software Systems
P.O. Box 55
Shrewsbury, N.J. 07701

Serial#: ------
Machine Config.: ______ _

(C Prime/ Apprentice Conly):
MANX Software Systems
P.O. Box 8
Shrewsbury, N.J. 07701

or call tech support at 1-201-542-1795 between 9am- 6pm FST.
(Sorry, phone support not available for the C Prime/ Apprentice C

product)

Description of problem--
(include what has already been attempted to fix it)
(use the reverse side of this sheet if needed)

