Aztec CG65

Cross Development Software
for 65xx-based Systems

version 3.2
July 1987

Copyright (¢) 1986 by Manx Software Systems, Inc.
All Rights Reserved
Worldwide

Distributed by:

Manx Software Systems, Inc.
P.O. Box 55
Shrewsbury, N.J. 07701
201-542-2121

o
o

USE RESTRICTIONS

The components of the Aztec CG65 software development system are
licensed software products. Manx Software Systems reserves all
distribution rights to these products. Use of these products is
prohibited without a valid license agreement. The license agreement is
provided with each package. Before using any of these products the
license agreement must be signed and mailed to:

Manx Software Systems
P. O. Box 55
Shrewsbury, N. J 07701

The license agreement limits use of these products to one machine.
Any uses of these products that might lead to the creation of or
distribution of unauthorized copies of these products will be a breach
of the licensing agreement and Manx Software Systems will excercise
its right to reclaim the original and any and all copies derived in whole
or in part from first or later generations and to pursue any appropriate
legal actions.

Software that is developed with Aztec CG65 software development
system can be run on machines that are not licensed for these
products as long as no part of the Aztec C software, libraries,
supporting files, or documentation is distributed with or required by
the software. In the latter case a licensed copy of the appropriate Aztec
C software is required for each machine utilizing the software. There
is no licensing required for executable modules that include runtime
library routines.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subdivision (b)(3)(ii) of the Rights in
Technical Data and Computer Software clause at 52.227-7013. DAC
#84-1, 1 March 1984. DOD Far Supplement.

COPYRIGHT

Copyright (C) 1981, 1982, 1984, 1986 by Manx Software Systems. All
rights reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or
otherwise, without prior written permission of Manx Software
Systems, Box 55, Shrewsbury, N. J. 07701.

- iii -

DISCLAIMER

Manx Software Systems makes no representations or warranties with
respect to the contents hereof and specifically disclaims any implied
warranties of merchantability or fitness for any particular purpose.
Manx Software Systems reserves the right to revise this publication
and to make changes from time to time in the content hereof without
obligation of Manx Software Systems to notify any person of such
revision or changes.

TRADEMARKS

Aztec CG6S5, Manx AS65, and Manx LN65, are trademarks of Manx
Software Systems. CP/M-86 is a tradmark of Digital Research. MSDOS
is a trademark of Microsoft. PCDOS is a trademark of IBM. UNIX is a
trademark of Bell Laboratories. Macintosh is a trademark of Apple
Computer.

-fy -

Manual Revision History

AUE 1984 ... sese s sasnanare e sessassssssssassssnenn First Edition
JAN 1986 .ottt st et ber s s e sre s enesneen Second Edition
AU 986 ...ttt e sennen Third Edition
JULY 1987 ..ttt svear e ees e sss s ssta e ssaensrsssasnsasssnose Fourth Edition

Summary of Contents

65xx-specific Chapters
title code
OVETVIEWoeeeeeeecevessssnsescesseresesssaese st sne s ssssesesiansenessssessssssssesssssasessasns ov
Tutorial INtrOQUCHION ..ueeeevereeeeercrees ceenerrtceesesersreressssensarseseressseasassssseseses tut
The COMPIIETS ..covvveiecieiecieeeiet e reenser s ser e eseensbesesssassronsressersassrens cc
The ASSEIMIBIETS ..ooueeveieriirrienees ctriereeeresaesie s resseseeesssassesbesssrssnsssessssensonseses as
TRE LINKET ...ttt ettt rte e ense st sesae e seasesense e sss e sesensesenes st ensone In
ULILLY PrOZIAmS ...covoueiciceieireens eierreseeeeercesseseeesesesansssasseressssssssessensossnens util
Library GeneTatiOncccceceres vevererrsereresesnsessessesesssssesessssssrssssseseseasasssns libgen
Technical INfOrmationooveeeeee eeviticctere e er e cre et eeeneans tech
System Independent Chapters
Overview of Library FUNCHONScocoeeeeeeeete ettt evenes libov
System-Independent FUNCHIONScccvvieverernns rvererevessrresessessessoeesessesrensne lib
SEYLC e eceteetees eerertesrere st et st errererte e be st st erseneb b sabe e e s oRessob e tensennessoren style
Compiler Error MESSABESc.cceieeueneeienns cerernvesesnnssnesesessssessassssanesossssssnnas err
Index
TRAEX oiiiitereeieiiens crecverrrsnisrrsesesenessrestesseseenessasssssssensrassnsasassensssnsessasae snsassen index

- vii -

Contents

OVerviewuocvcvernnienne ov
Tutorial Introduction tutor
1. Installing Aztec CG65 3

2. Creating Object Module Libraries 5

3. Translating a program into Intel hex codeouvrevevrcrerevcvnennens 7

4. Special Features 11
4.1 Native code vs. pseudo code eeveruesmesnrssesntereaeresnas 11

4.2 ZETO-PABE USABE ...ccreerrrrerereresressarnesesaresensessesesssarssesassnsenssonssessssss 12

5. Where to g0 from Hereoeeerveeecermieennee 13
THE COMPIIETS .vcveeeecceenrriceeretcce st sesesssesesesssasresaessossasasnssssrsssonsessans cC
1. Operating Instructions reeseeressensesassentoseanastssiasarnentsatssrses 3
1.1 The C SoUrce Filecreeeceercieinrerernneiesensssnsssseseseesssssssassens 3

1.2 The Output FRIES ..ottt eecevae e e s smesesaen sneresenes 4

1.3 Searching for #include flIesoee cevvrererrererecsesveneneresesssessesess 6

2. COMPIIET OPUOMNS ..ccvvereee crerreriseerensessesssresseresssssassessssessessosssnsonsnssssarsns 7
2.1 SummMary Of OPLiONScocceceveerrtenmsnriersssesesersessmesssessesensssssanses 7

2.2 Description Of OPIONSc.ooveeeee eeverrremeecresissereesesisseressssssssensess 9

3. Programmer INfOrMAationcoeve coerrieermsnsrresssnsesesresneseessosessssseaees 14
3.1 Supported Language Featuresccoee coverreeruerernssessssesessenes 14

3.2 Structure ASSIZRMENTccceeee cerrererremnrerirsresssssssersosssesssnsssssenass 14

3.3 Line ContinUAtioNcccce. cvvvenrenensvesieesiesernssssereesesssssaseesesannes 14

3.4 The v0id Data TYDE ...coeceeee cerreereeeeresreiesearessessssaessesssssssesssssssons 14

3.5 Special SYMDOISoovieeiirerrectraereneeerereessecsaesessensssersesssssssess 15

3.6 String MEIBINGcccceeiriee ceercrererseneeneneresnsssssassssssessssasassesassssnssssts 15

3.7 LONE NAITICS ...coceererirreree seerrsersessessenssssssesssasssessessasesasssasessassarssssaaes 16

3.8 ReServed WOrds ... cevremrcenireesereierssssmeessssesessesssssssssssensaass 16

3.9 GIlobal Variablescccvcecmrerveererurrarssesssessesensessssssassessenssssnenss 16

3.10 Data FOTMALSccccoevs covrmerecseseaserersncumssassessessasssannesssnsseessaneresaos 17

3.11 Floating Point EXCEPLIONSccccces cererecnesasnsensasasrencssanns 18

3.11 Register Variablescovvvereeeenernneeseesnecssenanns ceereeeees 20

3.12 In-line Assembly Languagc Code ... 20

3.13 Writing Machine-Independent Codeccncccemeveeieeececrcecnnns 21

4. ETTOT PrOCESSING ...cocoeres cuvsessnaesesareessnesansoresrasssssasssossesssrsssssessossnastssens 23
The ASSEIMDIETSccocevurrrer vereerreesecsaressesssnssasssasssssssenssnssaessssasssesacssessesssrssssorss as

- viii -

1. Operating Instructions we 3

1.1 The SOUICE FIlEoueieeeeceere et rereesereessesesessasssssassssessesassesnsssenns 3

1.2 The Object Code File ceeereretesnresetesentrasntesaseesosansraness 4

1.3 LiStING FIIEouoreeeeiert cerneeenrrnecvesesereseseresest sneserssesesesesesssssenssenss 4

1.4 Searching fOr iSEXt FiIESccvvvmernren cveveresensnsssarsscsessssssararenens 4

2. ASSEINDIET OPLIONS ..ooeveeeirereresnns sereesessmsesessssessssoresssosessesssassssasssssnsses 5

3. Programmer infOrmMationccccomeeeeersreresssssssesesssesss sessassasaansassens 5
THE LINKET ...coverivreerierenes crrvesvessessessesesssessessessessnosssesessassssssassesssssessassassssnasssens In
1. Introduction to linking . w“ wer 3

2. Using the Linker eretetereseseasesseatonsanase s saeresenen e 7

3. LINKET OPLOMScovverereriesrereeeersesisrrsesssessnssesressessassesssssessessnessessensesasss 9
ULILEY PIOBIAISc.covevecrreererrnns ceverarssenseesesssesessssesestenessssesesessans stassssssnsses util
ATCV ciueeveeeersoreassessses sosmmesssssasssssnssssesosssronsasasssesntssssssssssstssentssenstosssessssmasissssns 4
CIIITIOS ..oeveeverereveiecreseetsrsassesees sasarerassessaessersrssesssassiessonsesanstsssessenaserannnssresess 5
CIC cereecrrsensressessaseessessnsssernossassessernensessersssassnssnessassrnesssannestsnassassnsorsan .9
Rd e cerreeerrene 10
REXGScoeeereienien cermeresssnesssessssssesssasaessassssnesasessansnsssessesnsanenssssssasasesanssaases 11
IDES ...t recceenseesesnsssses seessesssessnsssesessesenersanersseseasasanesessaresnasanersstnans 14
INAKE .oovvereevenies servessssssossrssssnssnestssnessesssssessasstsnssrsssnsstessastassessesssessanseseans 25
INKATCV .ooiivirrierecrerieierresrereseressessrssessesessanssssssesessensastessssesssnsssansesassassassssessanes 4
OBAOS ..ot terenstes evebe s en s et a s b essesre s et essee e nasae Rt abe st ens 43
ODLINTOS ...creereriereiecreterrens seerssiessesenenessenessasessasssnsesssnsosssessantasssssssontssosassans 44
ord6é5 rerereereneessenens reerereserersserens 45
SQZOS .ovveerecreeecsensseraesssessesrass saseesesesnessessssstntesersaaestaansn et ansserstananaersanasenana 46
Library gEnerationc. ceveeeeerresereseesissessseesesssessssesesessraensssensssses libgen
1. Rewriting the fUNCLIONS coovevireeicee it sserresesernesenseneaes 3
1.1 The Start-up fUNCHONceveens coereererernsreresenresereessesaeseesessnssesnes 3

1.2 The __ main fUNCHONccceeereeceeerereeeereeecreceerreseseaessssesesssseevnae 4

1.3 The Unbuffered i/0 fUnCHiONScccoceereerrrecrreerere et cecectesennenens 4

1.4 The standard i/o functions *agetc’ and ’aputc’coccoervreennene 9

1.5 The sbrk heap management funCtion coceeeeeeervereveeeerenens 9

1.6 The exit and __exit fUNCHONSccuvren vermrirerrccsnnnccninnesesesnasscaenes 9

2. Building the LDIari€sccvveves coeviermneccernseessrnssnsesnseseessssssssssssenaes 10

3. FUnCtion deSCrIPLIONSccccee coeereeeeeesernesereressermsnssessssssessonssessssasasesss 11
Technical INfOTMALONccoeeree ceereerntecereseneneesessenesiessesesnasscassacsssaases tech
1. Memory Organization cocceeeeseesessesssessssesssesascssssssessonsstsossass 4

2. OVETIAYS veereicriiiierinseeaeiensressesssnessessesass sasssarsssssssasssssnssnessisssassssscssaes 7

3. Interfacing to Assembly LangUage cooceerevesrrereerronsesesereseens 14

4. Object Code FOrmaLtcccoveeeees cevevereenrcreeresevnssnssansessasassosssesasssasss 18

5. The PSEUAO SEACK ...cccceers ceveereeecctreeeicntneaeseenssnecsssesssanssssasonsssstensasessnas 29
Overview of Library FUDCHONScccocevicereiionnernnirenseresnesmnsssscacnsasns libov
L. I/ O OVEIVIEWuceeeeeceererienicneeesiererissesessessssessesessssasnassesssssessssssasassssseses 4
1.1 Pre-opened devices, command line argscceerrcrcenssennecaee 4

L2 FHE I/O eeeecetcereceteresesnesenesansesesssssennsssvanssnsnssasassast onsasssssanss 6

1.2.1 Sequential I/crreeeceerereserenesecssssssssssnssssssssnssessans 6

1.2.2 Random I/O .6

1.2.3 OPENINE FlESoooeeirenreeceneniresreenssnssssessesssssnsssassssnssssnsns 6

1.3 DEVICE I/ rrcesrerrseseisnseenssesisssesssessssssassessasssesssssensassssesns 7
1.3.1 Console 1/0 7

1.3.2 I/0O t0 Other DEVICESccoeeverereruecscrcrnresessnsesveresererssesssesses 7

1.4 Mixing unbuffered and standard I/O callsccocereerrneneee. 7

2. Standard I/O Overviewucvererervsrernnas crerersansnsennanes .9
2.1 Opening files and dEVICESccccereeererserrrnreneesssenenesessesssnssssenes 9
2.2 ClOSINE SLICAMScceereerrernreensreeseressesnasssnssessrssesesarssssasaessssnsssrasses 9
2.3 Sequential I/O 10
2.4 Random I/0O 10
2.5 BUSTEFINE ..cccecveeeerrecrnresvenenesiassessesssaresssssssssassasasssesessssassssssssnssases 10
2.6 Errors ... 11
2.7 The standard 1/0 functions 12

3. Unbuffered I/O OVEIVIEWuceieceeererrrreseevensassnenesesrssissssssessssnsns 14
3.1 FRIE J/O st resesssarmscssssssess e sasssssseassansoses 15
3.2 Device 1/0 15
3.2.1 Unbuffered I/0 to the Console 15

3.2.2 Unbuffered I/0 to Non-Console Devicesccccorvveeneen 16

4, Console I/O OVEIVIEWuecriveeirierirrenensserssresssssessosessessessssasseras 17
4.1 Line-oriented iNPULccieiveverrenneeeetsnsesetessesesassssesessssenses 17
4.2 Character-oriented INPULcccooveererrenrmeceriesrerissrseseneseesorssnns 18
4.3 USING JOCHLcoereecerreeirineererensnsssssseseresessanssssssesesssssssssssenssssasssssns 19
4.4 The SBY f1EIAS ..ottt cresssesnesesnsassesssesnensenes 19
4.5 EXAMPIES .cccorcrerererrerenrereneriesisrersossssrsrssessessossssosnosessssssssssessassanseses 20

5. Dynamic Buffer AHOCAtIONicerveceenrereeieeerenncsresessencansene 22
6. Error Processing OVEIVIEWcoccvvieeeeeeenrnnuessenessssssessessensosseses 23
System Independent FUNCLIONSooeeieeeeerereneiecrnsnenmessennersnssssaessesensanns lib
INACX ottt eteressteniee et sassesaetsas s sa e se et et e st enesesnntenabs ensrnenss 5
TRE FUNCHIONSeeveeveeereeceeerieeetie s renercsneresssesesressbsassrssesesssassessessssasssnens 8
SEYLE ettt ibearsreens stestesesssissibessorsosssessestas s ssasessarsressossrnserensebsaseness style
L. INOAUCHIONcoueerierieneeniirree e crevenssresessnssesessesssesssssrsssnersssssssessesnes 3
2. Structured Programmingccceceveeererneenmresesessssessssssasesssssssesseseese 7
3. Top-down Programmingcceeeeeeernrersieesessesissssesessesensasesessssssees 8
4. Defensive Programming and Debuggingcccocecerveeeevnrernene 10
5. Things to watch out for rreteressenereersretatenessaranns 15
ComPiIEr EITOr COAESuimeircececee cererceresiesnssesssssesssssssnssssssssssesesssssesssans err
1. SUMMATY ..ceeerenicnreverveereassrnesessensanens rerterestesesrasesrannens 4
2. EXPIABALIONSccoeceeerrseuracseranssessscsssrassssenenesesssesessssssssssssrasssesssssessanss 7
3. Fatal Error MESSABESccovmeuntieinmnncssensransessesssessssessscosssesasssosssones 35
INACK e cceetereccnrtrsesieses cvesesesseseresssmssssessessasstssestenssensessnrssssssastsssasnes index

OVERVIEW

-ov.l -

Overview Aztec CG65

-ov.2 -

Aztec CG65 Overview

The

Overview

Aztec CG65 Software Development Package is a set of

programs for developing programs in the C programming language; the
resulting programs run on ROM- and/or RAM-based systems that use
a 65xx microprocessor. The development can be done on several host
systems, as defined below.

Some of the features of Aztec CG6S5 are:

L]

The full C language, as defined in the book The C
Programming Language, by Brian Kernighan and Dennis
Ritchie, is supported.

Two pairs of compilers and assemblers are provided. One pair
generates native 65xx or 65C02 code, and the other "pseudo
code". A program’s native code is directly executed by the
processor, while its pseudo code is executed by an Aztec
routine that is in the program. A program can contain both
native and pseudo code.

An extensive set of user-callable functions is provided, in
source form. To use these functions, you must first compile
and assemble them, and create libraries of the resulting object
modules. To wuse the standard and/or unbuffered i/o
functions, you’ll have to rewrite the unbuffered i/o functions,
which are designed for an Appie // ProDOS system.

Code can be partitioned into overlays, allowing programs to
be created and executed that are larger than available
memory. To use this feature, you must rewrite the
unbuffered i/0 functions.

Modular programming is supported, allowing the components
of a program to be compiled separately, and then linked
together.

Assembly language code can either be combined in-line with
C source code, or placed in separate modules which are then
linked with C modules.

Special features are provided for programs that are to be
burned into ROM: (1) a utility program is provided that will
generate Intel hex records for a program. ROM chips
generated from these records will contain the program’s code,
a copy of its initialized data, and optionally, in the 65xx
power-up and interrupt vector fields, pointers to the routine
that handle these events; (2) a ROM program can contain both

-ov.3-

Overview Aztec CG65

initialized and uninitialized global and static variables. When
the program starts, its initialized variables will be
automatically set from the copy in ROM, and its uninitialized
variables will be cleared.

In order to create fast-executing programs, the compilers generate
code that use variables in the zero page of the 65xx. Since each 65xx-
based system uses different sections of the zero page, the compilers
allow you to specify the locations in the zero page that will be used by
your programs.

The functions provided with this package are UNIX compatible and
are compatible with Aztec C packages provided for other systems.
.Thus, once you have customized the functions, you can create
programs that will run on UNIX-based systems or on other systems
supported by Aztec C with little or no change.

Host systems
The Aztec CG65 software runs on several host systems, including
* PCDOS/MSDOS systems, such as the IBM PC;
* Vax systems that use the Ultrix operating system;
* PDP-11 systems that use UNIX version 7 or later
Components
Aztec CG6S5 contains the following components:
* c¢g65 and as65, the native-code compiler and assembler;
* cci and asi, the interpretive-code compiler and assembler;
* In65, the linker;
* [b, the object module librarian;
* Source for the library functions;
* Several utility programs.
Preview

This manual is divided into two sections, each of which is in turn
divided into chapters. The first section presents 65xx-specific
information; the second describes features that are common to all
Aztec C packages. Each chapter is identified by a symbol

The 65xx-specific chapters and their identifying codes are:

tutor describes how to get started with Aztec CG65: it
discusses the installation of Aztec CG65, and gives an
overview of the process for turning a C source program int
Intel hex code;)

-ovd -

Aztec CG65 Overview
cc, as, and In present detailed information on the compilers,
assemblers, and linker;

util describes the utility programs that are provided with Aztec
CG65;

libgen describes the creation of object module libraries from
the provided source;

tech discusses several miscellaneous topics, including memory
organization, overlays, writing assembly language functions,
and object module format

The System-independent chapters and their codes are:

libov presents an overview of the system-independent features
of the functions provided with Aztec CG65;

lib describes the system-independent functions provided with
Aztec CG65;

style discusses several topics related to the development of C
programs;

err lists and describes the error messages which are generated
by the compiler and linker.

-ov.5-

Overview Aztec CG65S

- 0v.6 -

TUTORIAL INTRODUCTION

- tutor.1 -

TUTORIAL Aztec CG65S

Chapter Contents

Tutorial INtrOAUCHION ...uciuiceveriecerirees cerreerecererensceesnsessnassssnnssrassoseseans tutor
1. Installing AzZteC CGOScoeirrens ceriececienieseseeseerensesneseesesnssessassesarsesses 3

2. Creating Object Module Libraries .. ee reeseanensnenressasess st sanarens 5

3. Translating a program into Intel hex code 7

4, SPECIAl FEAUTESceovveeeer crerreerereressrarssessesssssesessassenssesssarssssssnssssensans 11
4.1 Native code vs. pseudo COEcvumrereneriieririnisserarssesnsaseees 11

4.2 ZETOPAGE USAGE ...oveerererenenesrsrersuesesmsensssassessssssesossssmsassssessssassnses 12

5. Where t0 g0 from Hereceecceveerreccenincesenssneressssesssesssesenes 13

- tutor.2 -

Aztec CG65S TUTORIAL

Tutorial Introduction

This chapter describes how to quickly start using your Aztec CG65
cross development software. We first present the steps to install the
Aztec CG65 software on your disks. We then briefly mention the fact
that you must generate object module libraries from the source that
comes with Aztec CG65, and refer you to the chapter in which this is
discussed. Then we describe the steps to translate a C program to Intel
hex code. Finally, we introduce the rest of the manual.

Ideally, this chapter should consist of a cookbook set of steps that
you can follow to get started using Aztec CG65. However, since one
of those steps is a long and involved one, (ie, to modify the library
functions and then generate libraries), we recommend that you follow
the first step, which leads you through the installation of Aztec CG65
on your system, and then simply read the rest of chapter to get a idea
of how programs are developed using Aztec CG65. Then you can read
the chapter that discusses library generation, make any needed
revisions to the library function source, and generate your libraries.
Finally, you can come back to this chapter and translate a C program
into Intel hex code.

1. Installing Aztec OG6S

To install Aztec CG65 on your system, copy the files from the
distribution media (disk or tape) onto your disks.

If your system is one (such as the IBM PC running PCDOS, or a
UNIX system) that supports a hierarchical directory structure, we
recommend that you place the Aztec CG65 software in a set of related
directories, as shown in the following diagram.

- tutor.3 -

TUTORIAL Aztec CG65

Directory Contents
CG65

BIN ’ executable programs

INCLUDE header files

LIB object module libraries
STDIO stdio.arc files
MCH65 mché5.arc files
MISC misc.arc files
PRODOS prodos.arc files
DEV dev.arc files
TIME time.arc files
OVLY ovly.arc files
ROM rom.arc files

UTILITY
XFER xfer.arc files
TTY tty.arc files
CONFIG configarc files

WORK your programs

Copy the Aztec CG6S5 files into the directories as follows:

*

*

Into the BIN directory, copy all executable Aztec CG65
programs,

Into the INCLUDE directory, copy all "include files" (that is,
files having extension .h).

Into the LIB directory, copy the source archive lbmake.arc.
The libraries that you create will reside in this directory.

Extract the files from this archive using the arcv
command, and then delete libmake.arc from the LIB directory.

To extract files from /libmake.arc follow these steps: (1)
make sure that the BIN directory is in the path of directories
that will be searched by the operating system for programs
(on PCDOS and UNIX, this means adding the BIN directory
name to the PATH environment variable); (2) enter the
appropriate command to make LIB the default or current
directory (for example, on PCDOS this command is cd
\CG65\ LIB); (3) enter the command arcv libmake.arc.

Into the STDIO, MCH65, ..., and ROM directories, copy the
corresponding source archive (for example, copy stdio.arc into
the STDIO directory, mch65.arc into MCHG65, and so on).

Extract the files from each archive using arcv, and then
delete the archive.

Each of these directories contains the source and obj_ect
modules generated from the corresponding source archive
file. For example, the source files in STDIO were extracted

- tutor.4 -

Aztec CG65 TUTORIAL

from the stdio.arc source archive file by the arcv program.

* Into XFER, TTY, and CONFIG, copy the corresponding
source archive (xfer.arc into XFER, etc). xfer transfers files
between computers; #y is a terminal emulator; and config is
used to define device attributes for programs generated with
Aztec C65 for the Apple //. These programs are not
absolutely necessary for the development of programs with
Aztec CG635, and in fact you will probably have to modify
them for use with your system, but they can be very useful.

* Into the WORK directory, copy the exmplc sample C
program. Later in this chapter, we are going to lead you
through the steps to convert this program to Intel hex code.

2, Creating Object Module Libraries

The functions that are provided with Aztec CG65 are in source
form. Before you can create an executable program using CG65, you
must compile and assemble the functions and generate object module
libraries that contain them, after first making any needed
‘'modifications. For more information, see the Library Generation
chapter.

/

- tutor.S -

TUTORIAL Aztec CG65S

| Editor :
I
/ C \
| source file |
\ /
|
. { Aztec C Compiler ’
|
/ assembler \
| source file |
\ 7/
|
2 { Assembler {
|
- \
| object file |---> : Librarian {
| |
3. | . . | / subroutine \
| Link Editor P | library |
| \ /
| executable file |
\ /
|
4. I Hex65 |

\
| Intel hex file |
N\

Figure 1: Program Development with Aztec CG65

- tutor.6 -

Aztec CG65 TUTORIAL

3. Translating a program into Intel hex code

In this section we will lead you through the steps necessary to
translate the sample C program whose source is in exmpl.c into Intel
hex code. For a diagram of this procedure, see figure 1.

This program will be created so that it can reside in a system whose
RAM occupies the bottom part of the memory space and whose ROM
occupies the top part. In particular:

* The program’s data will be in RAM, beginning at address
0x200, thus leaving the first two pages of the memory space
free for the usual page 0 and page 1 purposes;

* The program’s code will be in ROM, beginning at address
0xe000.

+ The 65xx power-up and interrupt vectors will be in ROM and
will point to routines in the generated program.

3.1 Step 0' Create the Source Program

The first step to creating a C program is, of course, to create a disk
file containing its source. This step isn’t needed for this
demonstration, since the source code already exists in the file exmpi.c.

For your own programs, you can create the C source using any text
editor.

3.2 Steps 1 and 2: Compile and Assemble

To compile and assemble a C module, you must first decide which
compiler and assembler you are going to use. For this example, we
will assume that you are going to use the ones that generate native
65xx/65C02 code, cg65 and as65. Later in this chapter we describe the
compilers and assemblers that are provided with Aztec CG65.

Next, you must decide what zero-page locations you want the
compiler-generated code to use. For this example, we will use the
locations that are suitable for programs that are going to run on an
Apple //. Later in this chapter we describe in more detail a program’s
use of the zero page.

Finally, having made the above decisions, you can compile and
assemble exmpl.c by entering the following command:

cg65 +20,8,80,10 exmpl.c

This first starts the cg65 compiler, which translates the C source that’s
in exmpl.c into assembly language source. When done, cg65 starts the
as65 assembler. as65 assembles the assembly language source for the
sample program, translating it into object code and writing the object
code to the file exmplr in the current directory. When done, as65
deletes the file that contains the assembly language source, since it is
no longer needed.

- tutor.7 -

TUTORIAL Aztec CG65

The +g0,8,80,10 argument tells the compiler about the generated
code’s use of the 65xx zero page. It says that the stack, temporary, and
register areas begin at locations 0, 8, and 0x80, respectively; and the
register area is 0x10 bytes long. This is discussed in more detail below.

3.3 Step 3 Link

The object code version of the exmpl program must next be linked
to needed functions that are in the c./ib library of object modules and
converted into a memory image.

Before entering this command, you must set the CLIB65
environment variable, to define the directory that contains the object
module libraries. For example, on PCDOS, if the libraries are in
e\ cg65\ lib, the command to define CLIB65 is

set CLIB65=¢:\cg65\lib\

Note the terminating slash: this is usually required, because of the way
the linker builds the complete name of a library that is partially
identified using the linker’s -/ option. This is described below.

The command to link the sample program is:
In65 -t -b 200 -d 200 -¢ €000 exmpl.r -Ic

There’s a lot of parameters to this command, so let’s go through them,
one at a time:

3.3.1 The symbol table file and the -T option

The -T option tells the linker to write the program’s symbol table
information to the file exmplsynz this symbol table is needed by
hex65, which converts the output of the linker into Intel hex code.

3.3.2 Segment addresses and the -B, -D, -U, and -C options

As you recall, we want the program’s data to begin at 0x200 and its
code at 0xe000. We tell this to the linker using the segment
specification options: -B, -D, -U, and -C.

The -B 200 option tells the linker that the program’s "base address”,
that is, the address at which the linker-generated memory image can
begin to be loaded into memory, is 0x200.

The -D 200 option tells the linker that the program’s initialized data
is to begin at location 0x200. The linker organizes a program’s data
into two segments: its initialized data segment contains those of the
program’s global and static variables that are assigned an initial value
(e.g. static int var=1); and its uninitialized data segment contains the
program’s other global and static variables. Just as the linker supports
an option that tells it where to put the program’s initialized data, it also
supports a -U option, that tells it where to put the program’s
uninitialized data. When the -U option isn’t used, the linker places
uninitialized data immediately above the initialized data.

- tutor.8 -

Aztec CG65 TUTORIAL

The -C e000 option tells the linker that the program’s code is to
begin at location 0xe000. Just as the linker groups all of a program’s
initialized and uninitialized data into segments, it groups all of a
program’s code into a code segment. The -C option defines the
starting address of this segment.

On a 65xx, the top 6 bytes of the memory space contain vectors to
the power-up and interrupt routines, and the first 512 bytes of
memory contain dynamically-changing information. Because of this,
most 65xx ROM systems have their ROM at the top of the memory
space and their RAM at the bottom. The linker has default values for
a ;}rogram’s base address and the beginning addresses of its segments,
as follows:

* The base address defauit to 0x800;
* The code segment begins three bytes past the base address;
* The initialized data segment begins immediately after the
code segment;
* The uninitialized data segment begins immediately after the
initialized data segment.
These default values are usually not appropriate for a ROM system, so
you will usually use the linker’s segment-specification options when
generating a program that’s going to be burned into ROM.

3.3.3 The input object module file and the memory image output file

The exmplr parameter explicitly tells the linker to include this
module in the program that it’s generating.

By default, the linker sends the output of the memory image it
creates to a file whose name is derived from that of the first object
module file that it encounters, by deleting the extension. Thus, the
memory image for the above command is sent to the file exmpl. You
can explicitly define the name of the memory image file using the
linker’s -O option.

3.3.4 Libraries and the -L option

The -Lc option tells the linker to search the c.lib library that’s in the
directory defined by the CLIB65 environment variable for needed
functions.

As you can see, the -L option doesn’t completely define the name
of a library file; the linker generates the complete name by taking the
letters that follow the -L, prepending them with the value of the
CLIB65 environment variable, and appending the letters .lb. Thus,
when CLIB65 has the value e\ cg65\ lib\, the -Lc option specifies the
library whose complete file name is e\ cg65\ lib\ c.lib.

During the link step, the linker will search the libraries specified to
it for modules containing needed functions; when such a module is
found, the linker will include the module in the executable file it’s

- tutor.9 -

TUTORIAL Aztec CG6S
building.

All C programs need to be linked with c.lib (or its cc-compiled
equivalent, cilib, as described below). This library contains the non-
floating point functions which are defined in the functions chapter, lib
of this manual It also contains functions which are called by
compiler-generated code.

If a program performs floating point operations, it must also be
linked with a math library. The math library that you will use when
getting familiar with Aztec C is m.lib. You can alternatively use its
cci-compiled equivalent, mi.lib.

When a program is linked with a math library, that library must be
specified before c.lib. For example, if exmplc performed floating
point, the following would link it

In65 exmplr -Im -Ic
3.4 Step 4: Convert to Intel hex code

The next step is to convert the memory image generated by the
linker into Intel hex code. The is done with the following command:

hex65 exmpl

This command causes hex65 to translate the program’s memory
image into Intel hex code. When this code is fed into a ROM
programmer, the resulting ROM code will contain the program’s code
segment, a copy of its initialized data segment immediately following
the code, and the power-up and reset vectors up at the top of memory.

Note: when the ROM system is started, its RAM contains random
values, and the Aztec startup routine sets up the initialized data
segment that resides in RAM from the copy that’s in ROM.

hex65 generates Intel hex records, named exmpl.x00, exmpl.x01,
and so on, for each 2 kb section of memory, beginning with the
program’s code segment. Thus, exmplx00 contains the records for
0xe000-0xe800, exmpl.x01 contains the records for 0xe800-0xf000, and
SO on.

The last hex file generated by hex65 will contain records to
initialize the nmi, reset, and irq vectors at the top of the 65xx address
space. With the supplied software, these vectors point to locations in
rom.a65. you can modify the software so that the vectors point to your
own handlers.

If the ROM corresponding to the last hex file generated to hold the
program’s code and copy of its initialized data isn't the section of
ROM that would be at the top of the 65xx memory space, hex65 will
output a separate file containing just those records needed to initialize
the vectors in this last ROM. The extension on this file will indicate
its sequence in the set of ROM chips needed to fill the memory space

- tutor.10 -

Aztec CG65 TUTORIAL

from the beginning of the program’s code to the top of memory; for
example, if two 2 kb ROMs were sufficient to hold the program’s code
and copy of its initialized data, then the code and data would be in
exmpl.x00 and exmpl.x0l, and the vectors would be in the file
exmpl.x03.

There are several additional features of hex65. For example, hex65
assumes that the size of each ROM is 2 kb long; using the -P option,
you can explicitly define the size of each ROM. And by default,
hex65 generates the Intel hex records that set up these vectors; you can
tell hex65 not to generate these vector-initializing records. For a
detailed description of hex65, see the Utility Programs chapter.

4. Special features of Aztec OG65

That concludes our step-by-step, cookbook introduction to Aztec
CG6S5. In the following paragraphs, we want to describe two special
features of Aztec CG6S5: its ability to generate either 65xx code or
pseudo code, and the feature that allows you to define the locations
within the zero page that generated programs will use.

.4.1 Native Code vs. Pseudo Code

Aztec CG65 comes with two compilers and two assemblers: The
cg65 compiler and as65 assembler, which together generate native
machine code; and the cci compiler and asi assembler, which together
generate pseudo code that must be interpreted.

There are advantages and disadvantages to using each
compiler/assembler pair: ’

* Code generated by cg65 and as65 is fast but large;
* Code generated by cci and asi is small but slow.

Thus, when you are going to create an executable program, you
must decide which compiler/assembler pair to use. We recommend
that you first use cg65 and as65. If it gets too large, use cci and asi. If
neither of these alternatives is acceptable, with a native code version
being too large and an interpreted version being too slow, you can
divide the program into modules, compiling and assembling some of
them into native code, the rest into interpreted code, and linking them
all into a single executable program.

4.1.1 Native code and pseudo code libraries

Aztec CG65 provides "makefiles” with which you can generate two
versions of each library: one whose modules are compiled with ¢g65,
the other whose modules are compiled with cci. These libraries are:

clib General purpose functions (cg65-compiled);
ci.lib General purpose functions (cci-compiled);
m.lib Floating point functions (cg65-compiled);
mi.lib Floating point functions (cci-compiled).

- tutor.11 -

TUTORIAL Aztec CG65

As always, you can freely intermix cg65-compiled modules with
cci-compiled modules, even when some of the modules come from one
library or another.

4.2 Zero-page usage

The first 256 bytes of memory on a 65xx-based system are known
as the "zero page", and are used differently by each system. Code
generated by the Aztec CG65 compilers also makes use of the zero
page, for storing variables. In order to allow CG65-generated code to
be used on any 65xx-based system, the Aztec CG65 compilers group
the zero-page variables used by generated code into three areas and
allow you to define the location of these areas.

One area, which is 8 bytes long, contains the pseudo stack and
frame pointers, and, if the program contains a cci-compiled module,
the pseudo code interpreter’s program counter.

Another area, which is 24 bytes long, contains five temporary
registers, each of which is four bytes long.

The last area contains a program’s register variables, and its size is
specified by you when you compile a program. Thus, if your system
uses most of the zero page, you can specify that your program uses
few, or no, register variables. If your system has extra space in the
zero page, you can fill it with register variables, thereby increasing the
performance of your programs.

For example, the following table lists the starting addresses of the
three areas and the size of the register variable area on the Apple //,
Commodore 64, and the Atari 400/800. All values are in hexadecimal.

Apple // C-64 Atari
stack area addr 0 2 EO
temporary area addr 8 A E8
Register var area addr 80 30 D4
Reg var area size 10 8 6

The location of these zero page locations are defined in two ways:
with the cg65 compiler’s +G option, and in the assembly language file
zpage.h:

4.2.1 Zero page usage of cg65-compiled modules

The c¢g65 compiler’s +G option defines the zero page usage of
cg65-compiled, C language modules. For example, the following
command compiles hello.c for use on the Commodore 64:

cgb5 +g2,A,30,8 hello.c
4.2.2 Zero page usage of assembly language modules

The assembly language file zpage.h defines the zero page usage of
assembly language modules. Normally, you will create a zpage.h file

- tutor.12 -

Aztec CG65 TUTORIAL

carly in your development cycle, before you create your libraries,
since this file is included in the assembly of many of the library’s
assembly language modules. A version of zpage.h is supplied with
Aztec CG65, and you can customize it for use with your system.

4.2.3 Zero page usage of cci-compiled modules

zpage.h also indirectly defines the zero page usage of cci-compiled,
C language modules. The reasons for this are (1) the pseudo code
interpreter, which executes cci-generated pseudo code, is an assembly
language module that accesses zero page locations on behalf of a cci-
compiled module, and (2) the locations of these zero page locations are
defined by the zpage.h with which the interpreter is assembled.

cci itself produces machine-independent code; the same cci-
generated object module can be executed on different 65xx systems,
just by linking it with different object module versions of the
interpreter, each of which has been genecrated by assembling the
interpreter together with a zpage.h that defines the zero-page usage of
the target system.

§. Where to go from here

In this chapter, we’ve just begun to describe the features of Aztec
CG6S.

One chapter that you must read is the Library Generation chapter,
which discusses the generation of object module libraries from the
source that comes with Aztec CG65.

We encourage you to use the make program-maintenance program
to generate libraries, if such a program is available for your host
system. To provide this encouragement, Aztec CG65 provides
"makefiles" that can be used by UNIX-compatible make programs. If
your host system is one, such as PCDOS, that doesn’t have its own
make program, and if the Aztec make is available for your system, it
will be included in your Aztec CG65 package. A description of the
Aztec make program is in the Utility Programs chapter.

For more information on the sections of a program, see the
Program Organization section of the Technical Information chapter,
and the section of the Linker chapter that discusses the segment
specification options. :

The hex65 program supports several options that haven’t been
discussed in this introduction. For a complete description of this
program see the Utility Programs chapter.

The Technical Information chapter contains information on several
interesting topics, including the writing of assembly language
functions, the pseudo stack, and object code format.

- tutor.13 -

TUTORIAL Aztec CG65
You should also read the Compiler, Assembler, and Linker

chapters, to become familiar with all the options that these programs
provide.

- tutor.14 -

THE COMPILERS

-cc.l -

COMPILERS Aztec CG65

Chapter Contents

The compilers v ereseeseereaessessesesnes cc
1. Operating INSIIUCLIONScces eemeereessesensaressssessssssersessssssssecssssnesssaseses 3
1.1 The C Source File . crarseesseseesaesntsaasnesssssnstsnesaess 3
1.2 The Output Files 4
1.3 Searching for #tinclude files couorereresereresseesennseseessnesenenens 6

2. Compiler Options e 7
2.1 Summary of Options .7
2.2 Description of Options 9

3. Programmer Information e rreseeversressressneseasansenens 14
3.1 Supported Language Features ... veveeeeenvrrerermensssnersesssesens 14
3.2 Structure ASSIZNMENL cecrereesssrsesenssnsesssessrsesssessasseressenes 14
3.3 Line Continuation . 14
3.4 The v0id Data TYPE ...cocveeen ereererinssesvenisesscesnsmssesesesssssesessenssenes 14
3.5 Special SYMDOISooeeeeeecrcrrirececrceneni e s enreesesessssesessssesnns 15
3.6 String Mergingccceove cennnne. ereresersseseaessseteresessressrarse s rnestane 15
3.7 LONE NAIMES ..o e mercseseerevssnessmssesessesesssnssesassensaessensanns 16
3.8 RESEIVEd WOIMScocuvrvres cerrertcrnnniennensensacsenssensesessasassesssessaosons 16
3.9 Global Variablesccveviereiemreriviniiennecsseeeeseseseressnssssassssesnens 16
3,10 Data FOTMALSc.ccvee covrrresrenrenenssrssssessssnssssessessossesessorsssesssssssae 17
3.11 Floating Point EXCEPLIONScoeveve cevvrereererermseneeeenssssnseesssseseas 18
3.11 RegISter Variables ... veeierreierenieresssesrensessessesaesssssasesnsans 20
3.12 In-line Assembly Language Code correeeeninrnisineerererennns 20
3.13 Writing Machine-Independent Code ...cevonveevvivvreecnreenn 21

4, ErrOr PIOCESSINE .ocoviivie st iernteertee et s s seas e ssn e e s sensesessennacs 23

-cc2 -

Aztec CG65 COMPILERS

The Compilers

This chapter describes cg65 and cci, the Aztec C compilers for the
65xx and 65C02 microprocessors. It is not intended to be a complete
guide to the C language; for that, you must consult other texts. One
such text is The C Programming Language, by Kernighan and Ritchie.
The compilers were implemented according to the language description
in the Kernighan and Ritchie book.

cg65 translates C source code into native 6502 assembly language
source code. cci translates C source code into assembly language source
for a "pseudo machine"; in an executable program, cci-compiled code
must be interpreted by a special Aztec C routine.

This description of the compilers is divided into four subsections,
which describe how to use the compilers, compiler options,
_information related to the writing of programs, and error processing.

To the operator and programmer, the two compilers are very
similar. In the discussion that follows, we will use the name cg65
when describing features that are common to both compilers. Where
differences exist, we will say so.

1. Compiler Operating Instructions
¢g65 is invoked by a command of the form:
cgb5 [-options] filename.c

where [-options] specify optional parameters, and filename.c is the
name of the file containing the C source program. Options can appear
either before or after the name of the C source file.

The compiler reads C source statements from the input file,
translates them to assembly language source, and writes the result to
another file.

Upon completion, the compiler by default activates the as65
assembler (cci by default starts the asi assembler). The assembler
translates the assembly language source to relocatable object code,
writes the result to another file, and deletes the assembly language
source file. The -4 option tells the compiler not to start the assembler.

1.1 The C source file

The extension on the source file name is optional If not specified,
it’s assumed to be .c. For example, with the following command, the
compiler will assume the file name is text.c.

-cc.3 -

COMPILERS Aztec CG65

cg65 text

The compiler will append .c to the source file name only if it doesn’t
find a period in the file name. So if the name of the source file really
doesn’t have an extension, you must compile it like this:

cgb5 filename,

The period in the name prevents the compiler from appending .c to
the name.

1.2 The output files
1.21 Creating an object code file

Normally, when you compile a C program you are interested in the
relocatable object code for the program, and not in its assembly
language source. Because of this, the compiler by default writes the
assembly language source for a C program to an intermediate file and
then automatically starts the assembler. The assembler then translates
the assembly language source to relocatable object code, writes this
code to a file, and erases the intermediate file.

By default, the object code generated by a cg65-started assembly is
sent to a file whose name is derived from that of the file containing
the C source by changing its extension to .r (the default extension for a
cci-started assembly is ./). This file is placed in the directory that
contains the C source file. For example, if the compiler is started with
the command

cgb5 prog.c

the file prog.r will be created, containing the relocatable object code
for the program.

The name of the file containing the object code created by a
compiler-started assembler can also be explicitly specified when the
compiler is started, using the compiler’s -O option. For example, the
command

cg65 -O myobj.rel prog.c

compiles and assembles the C source that’s in the file prog.c, writing
the object code to the file myobj.rel

When it’s going to automatically start the assembler, the compiler
by default writes the assembly language source to a temporary file
named ctmpxxx.xxx, where the x’s are replaced by digits in such a
way that the name becomes unique. This temporary file is placed in
the directory specified by the environment variable CCTEMP. If this
variable doesn’t exist, the file is placed in the current directory.

When CCTEMP exists, the fully-qualified name of the temporary
file is generated by simply prefixing its value to the ctmpxxx.xxx
name. For example if CCTEMP has the value

- ccd -

Aztec CG65 COMPILERS
/RAM/TEMP/

then the temporary file is placed in the TEMP directory on the RAM
volume.

For a description on the setting of environment variables, see your
operating system manual.

If you are interested in the assembly language source, but still want
the compiler to start the assembler, specify the option -T when you
start the compiler. This will cause the compiler to (1) send the
assembly language source to a file whose name is derived from that of
the file containing the C source by changing its extension to .asm and
(2) include the C source statements as comments in the assembly
language source. For example, the command

cg65 -T prog.c
compiles and assembles prog.c, creating the files prog.asm and prog.r.
1.2.2 Creating just an assembly language file

There are some programs for which you don’t want the compiler to
automatically start the assembler. For example, you may want to
modify the assembly language generated by the compiler for a
particular program. In such cases, you can use the compiler’s -4
option to prevent the compiler from starting the assembler.

When you compile a program using the -4 option, you can tell the
compiler the name and location of the file to which it should write the
assembly language source, using the -O option.

If you don’t use the -O option but do use the -4 option, the
compiler will send the assembly language source to a file whose name
is derived from that of the C source file by changing the extension to
.asm, placing this file in the same directory as the one that contains the
C source file. For example, the command

cg65 -A prog.c

compiles but doesn’t assemble the C source that’s in prog.c, sending the
assembly language source to prog.asm.

As another example, the command
cg65 -A -O temp.ab$s prog.c

compiles but doesn’t assemble the C source that’s in prog.c, sending the
assembly language source to the file temp.a65.

When the -A option is used, the option -T causes the compiler to
include the C source statements as comments in the assembly language
source.

-cc.S-

COMPILERS Aztec CG65

1.3 Searching for #include files

You can make the compiler search for #include files in a sequence
of directories, thus allowing source files and #include files to be
contained in different directories.

Directories can be specified with the -I compiler option, and with
the INCL65 environment variable. The compiler itself also selects a
few areas to search. The maximum number of searched areas is eight.

If the file name in the #include statement specifies a directory, just
that directory is searched.

1.3.1 The -I option.
A -I option defines a single directory to be searched. The area
descriptor follows the -I, with no intervening blanks. For example, the

following -I option tells the compiler to search the /ram/include
directory:

-I/ram/include
1.3.2 The INCL6S environment variable.

The INCL65 environment variable also defines a directory to be
searched for #include files. The value of this variable is the name of
the directory to be searched.

The command that is used to set environment variables varies from
system to system. For example, on PCDOS the following command
sets INCL65 so that the directory \CG65\ INCLUDE is searched for
include files:

set INCL65=\CG65\INCLUDE

For a description of the command that’s used on your system to set
environment variables, see your operating system manual.

1.3.3 The search order for include files
Directories are searched in the following order:

1. If the #include statement delimited the file name with the
double quote character, ", the current directory is
automatically searched. If delimited by angle brackets, < and
>, this area isn’t automatically searched.

2. The directories defined in -I options are searched, in the
order listed on the command line.

3. The directory defined in the INCL6S environment variable is
searched.

- ¢c.6 -

Aztec CG65 COMPILERS

2. Compiler Options

There are two types of options in Aztec C compilers: machine
independent and machine dependent. The machine-independent
options are provided on all Aztec C compilers. They are identified by
a leading minus sign.

The Aztec C compiler for each target system has its own, machine-
dependent, options. Such options are identified by a leading plus sign.

- The following paragraphs first summarize the compiler options and
then describe them in detail

2.1 Summary of options
2.1.1 Machine-independent Options
-A Don’t start the assembler when compilation is done.

-Dsymbol{=value]
Define a symbol to the preprocessor.

-Idir Search the directory named dir for #include files.

-0 file Send output to file.

-S Don’t print warning messages.

-T Include C source statements in the assembly code

output as comments. Each source statement appears
before the assembly code it generates.

-B Don’t pause after every fifth error to ask if the
compiler should continue. See the Errors subsection
for details.

-Enum Use an expression table having num entries.
-Lnum Use a local symbol table having num entries.
-Ynum Use a case table having num entries.
-Znum Use a literal table having num bytes.

2.1.2 Special Options for the 65xx Compilers

+C Generate 65C02 code (cg65 only).

+B Don’t generate the statement "public .begin”.

+L Turn automatic variables into statics (cg65 only).
+Gstk,tmp,reg,siz

(cg65 only). Define zero-page locations for cg65-
compiled modules: stack area begins at stk, temporary
register area at {mp; register variable area begins at reg
and is siz bytes long. The values are in hex. The zero
page locations used by cci-compiled modules are

-cc.7 -

COMPILERS Aztec CG65

defined in zpage.h, when the pseudo code interpreter
is assembled.

-cc.8 -

Aztec CG65S COMPILERS

2.2 Detailed description of the options
2.2.1 Machine-independent options
The -D Option (Define 2 macro)
The -D option defines a symbol in the same way as the
preprocessor directive, #define. Its usage is as follows:
¢g65 -Dmacro[=text] prog.c
For example,
cg65 -DMAXLEN=1000 prog.c
is equivalent to inserting the following line at the beginning of the
program:
#define MAXLEN 1000

Since the -D option causes a symbol to be defined for the
preprocessor, this can be used in conjunction with the preprocessor
directive, #ifdef, to selectively include code in a compilation. A
common example is the following code:

#ifdef DEBUG
printf("value: %d\n", i);
#endif

This debugging code would be included in the compiled source by
the following command:

cg65 -dDEBUG program.c

When no substitution text is specified, the symbol is defined to have
the numerical value 1.

The -I Option (Include another source file)

The -7 option causes the compiler to search in a specified directory
for files included in the source code. The name of the directory
immediately follows the -I, with no intervening spaces. For more
details, see the Compiler Operating Instructions, above.

The -S Option (Be Silent)

The compiler considers some errors to be genuine errors and others
to be possible errors. For the first type of error, the compiler always
generates an error message. For the second, it generates a warning
message. The -S option causes the compiler to not print warning
messages.

2.21.1 The Local Symbol Table and the -L Option

When the compiler begins processing a compound statement, such
as the body of a function or the body of a for loop, it makes entries
about the statement’s local symbols in the local symbol table, and

-cc9 -

COMPILERS Aztec CG65

removes the entries when it finishes processing the statement. If the
table overflows, the compiler will display a message and stop.

By default, the local symbol table contains 40 entries. Each entry is
26 bytes long; thus by default the table contains 520 bytes.

You can explicitly define the number of entries in the local symbol
table using the -L option. The number of entries immediately follows
the -L, with no intervening spaces. For example, the following
compilation will use a table of 75 entries, or almost 2000 bytes:

cg65 -L.75 program.c
2.2.1.2 The Expression Table and the -E Option

The compiler uses the expression table to process an expression.
When the compiler completes its processing of an expression, it frees
all space in this table, thus making the entire table available for the
processing of the next expression. If the expression table overflows,
the compiler will generate error number 36, "no more expression
space", and halt.

By default, the expression table contains 80 entries. Each entry is
14 bytes long; thus by default the table contains 1120 bytes.

You can explicitly define the number of entries in the expression
table using the -E option. The number of entries immediately follows
the -E, with no intervening spaces. For example, the following
compilation will use a table of 20 entries:

¢g635 -E20 program.c
2.2.1.3 The Case Table and the -Y Option

The compiler uses the case table to process a switch statement,
making entries in the table for the statement’s cases. When it
completes its processing of a switch statement, it frees up the entries
for that switch. If this table overflows, the compiler will display error
76 and halt.

For example, the following will use a maximum of four entries in
the case table:

- ¢cc.10 -

Aztec CG65 COMPILERS

switch (a) {

case O: /* one */
a+=1;
break;
case 1: /* two */
switch (x) {
case 'a” /* three */
funcl (a);
break;
case b /* four */
func2 (b);
break;
} /* release the last two */
a=3J;
case 3: /* total ends at three */
func2 (a);
break;
}

By default, the table contains 100 entries. Each entry is four bytes
long; thus by default, the table occupies 400 bytes.

You can explicitly define the number of entries in the case table
using the compiler’s -Y option. The number of entries immediately
follows the -Y, with no intervening spaces. For example, the following
compilation uses a case table having 50 entries:

cg65 -Y50 file
2.2.1.4 The String Table and the -Z Option

When the compiler encounters a "literal” (that is, a character
string), it places the string in the literal table. If this table overflows,
the compiler will display error 2, "string space exhausted", and halt.

By default, the literal table contains 2000 bytes.

You can explicitly define the number of bytes in this table using
the compiler’s -Z option. The number of bytes immediately follows
the -Z, with no intervening spaces. For example, the following
command will reserve 3000 bytes for the string table:

cg65 -Z3000 file
2.2.1.5 The Macro/Global Symbol Table

The compiler stores information about a program’s macros and
global symbols in the Macro/Global Symbol Table. This table is
located in memory above all the other tables used by the compiler. Its
size is set after all the other tables have been set, and hence can’t be
set by you. If this table overflows, the compiler will display the
message "Out of Memory!” and halt. You must recompile, using
smaller sizes for the other tables.

-cc.11 -

COMPILERS Aztec CG65

2.2.2 65xx Options
2221 The +G Option (Define zero page usage for cg65-compiled modules)

The +G option defines the zero page locations that will be used by
cg65-generated code. The option has the form

+Gsaddr, taddr,uaddr,ucnt
where

saddr Starting address, in hex, of the stack area. This area is
8 bytes long and by default begins at location 0.

taddr Starting address, in hex, of the temporary register
area. This area is 24 bytes long and by default begins
at location 8.

uaddr Starting address, in hex, of the user register area. The
size of this area is two times the value that is specified
for the +G option’s ucnt parameter. By default, this
area begins at location 0x80.

ucnt The number of bytes in the register variable area, in
hex. By default, this area is 16 bytes long; ie, contains
space for eight register variables.

No spaces are allowed in the +G option.

The default values for unspecified +G fields are those used for
Apple // programs.

As an example of the use of this option, the following command
compiles the "hello, world" program for use on a Commodore 64,
which uses saddr=2, taddr=0xa, uaddr=0x30, and ucnt=8:

cgb5 +g2,a,30,8 hello.c

The +G option is not used by the cci compiler. The zero page usage
of cci-compiled modules is defined when the pseudo code interpreter
.nterp is assembled.

2.2.2.2 The +C Option (Generate 65002 code - cg65 only)

The +C option causes cg65 to generate assembler source for a
65C02 processor. If this option isn’t used, cg65 will generate code for
a 6502 processor.

22.2.3 The +B Option (Don’t generate reference to .begin)

Normally when compiling a module, the compilers generate a
reference to the entry point named .begin. Then when the module is
linked into a program, the reference causes the linker to include in the
program the library module that contains .begin.

The +B option prevents the compilers from generating this
reference.

-cc.12 -

Aztec CG6S COMPILERS

For example, if you want to provide your own entry point for a
program, and its name isn’t .begin, you should compile the program’s
modules with the +B option. If you don’t, then the program will be
bigger than necessary, since it will contain your entry point module
and the standard entry point module. In addition, the linker by default
sets at the program’s base address a jump instruction to the program’s
entry point; if it finds entry points in several modules, it will set the
jump to the last one encountered.

2.2.24 The +L Option (Turn Autos into Statics - cg65 only)

The +L option causes the compiler to change the class of variables
whose class is automatic to static. This can cause a significant increase
in execution speed, since it is faster to address static variables, which
are directly addressable, than automatic variables, which are on the
stack and must be indirectly addressed.

Automatic variables that are declared using the auto keyword, (for
example auto int i), aren’t affected by the +L option: they will remain
automatic.

Also, if a register is available for an automatic variable that is
declared using the register keyword (for example, register int i), the
variable will be placed in a register and will not be turned into a static.
If a register is not available, however, such a variable will be turned
into a static variable.

Like any other static data, an auto-turned-static is initialized to zero
before the program begins.

A function that recursively calls itself may not work correctly when
it is compiled with the +L option. For example, the following program
will print 1 when compiled without the +L option, and 100 when
compiled with the +L option:

main()

printf("%d", qtest());
}

qtest()
..
int i;
if (++i < 100)
qtest(i);
return (i);

-cc13 -

COMPILERS Aztec CG65

3. Writing programs

The previous sections of this description of the compiler discussed
operational features of the compiler; that is, presented information that
an operator would use to compile a C program. In this section, we
want to present information of interest to those who are actually
writing programs.

3.1 Supported Language Features

Aztec C supports the entire C language as defined in The C
Programming Language by Kernighan and Ritchie. This now includes
the bit field data type.

The following paragraphs describe features of the standard C
language that are supported by Aztec C but aren’t described in the K &
R text

3.2 Structure assignment

Aztec C supports structure assignment With this feature, a
program can cause one structure to be copied into another using the
assignment operator.

For example, if s! and s2 are structures of the same type, you can
say:

sl = s2;
thus causing the contents of structure sl to be copied into structure s2.

Unlike other operators, the assignment operator doesn’t have a
value when it's used to copy a structure. Thus, you can’t say things
like "a = b = ¢", or "(a=b).fld" when a, b, and ¢ are structures.

3.3 Line continuation

If the compiler finds a source line whose last character is a
backslash, \, it will consider the following line to be part of the current
line, without the backslash. For example, the following statements
define a character array containing the string "abcdef™

char array[]}="ab\
cd\
ef™
3.4 The void data type
Functions that don’t return a value can be declared to return a void.
This provides a safety check on the use of such functions. If a void
function attempts to return a value, or if a function tries to use the

value returned by a void function, the compiler will generate an error
message.

Variables can be declared to point to a void, and functions can be
declared as returning a pointer to a void.

-cc.14 -

Aztec CG65 COMPILERS

When an assignment of one pointer to another is made, the
compiler usually wants both pointers to point at the same type of
object; otherwise, it will issue a warning message. However, a pointer
to an object of type void can be assigned to, and can itself be assigned
to, a pointer to an object of any type without causing the compiler to
complain,

That is, the compiler will generate a warning message for the
assignment statement in the following program:

main()
char *cp;
int *ip;
ip = cp;
}

The compiler won’t complain about the following program:
main()
char *cp;

void *getbuf();
cp = getbuf();

3.5 Spedal symbols
Aztec C supports the following symbols:

___FILE____ Name of the file being compiled. This is a
character string.
___LINE_ Number of the line currently being
compiled. This is an integer.
FUNC Name of the function currently being

compiled. This is a character string,

In case you can’t tell, these symbols begin and end with two
underscore characters.

For example,
printf{"file= %s\n", FILE);
printf("line= %d\n", LINE),
printf("func=%s\n", FUNC)

3.6 String merging

The compiler will merge adjacent character strings. For example,

print{("file=" FILE " line= %d func=" FUNC ,
LINE),

-cc.15 -

COMPILERS Aztec CG65S

3.7 Long names

Symbol names are significant to 31 characters. This includes
external symbols, which are significant to 31 characters throughout
assembly and linkage.

3.8 Reserved words

const, signed, and volatile are reserved keywords, and must not be
used as symbol names in your programs.

3.9 Global variables

Aztec C supports the rule of the standard C language regarding
global variables that are to be accessed by several modules. This rule
requires that in the modules that want to access such a variable, exactly
one module declare it without the externm keyword and all others
declare it with the extern keyword.

Previous versions of Aztec C did not strictly enforce this rule. In
these versions, the following modified version of the rule was
enforced:

* multiple modules could declare the same variable, with the
extern keyword being optional;

* when several modules declared a variable without using the
extern keyword, the amount of space reserved for the variable
was set to the largest size specified by the various
declarations;

* when one module declared a variable using the extern
keyword, at least one other module must have declared the
variable without using the extern keyword;

* at most one module could specify an initial value for a global
variable;

* when a module specified an initial value for a global variable,
the amount of storage reserved for the variable was set to the
amount specified in the declaration that specified an initial
value, regardless of the amounts specified in the other
declarations.

In order to (1) enforce the standard C rule regarding global
variables and (2) provide compatibility with previous versions of Aztec
C, the current Aztec linker will generate code consistent with the
previous versions, but will by default generate a "multiply defined
symbol" message when multiple modules are found that declare a
global variable without the extern keyword. The -M linker option can
be used to cause the linker to treat global variables just as they were in
previous versions of Aztec C; in this case, the "multiply defined
symbol" message won’t occur when several modules declare the same
variable without the extern keyword, as long as no more than one
specifies an initial value for the variable. If multiple modules declare
an initial value for the same variable this message will be issued,

- cc.16 -

Aztec CG6S COMPILERS

regardless of the use of the -M option.

Both previous and current versions of Aztec C prevent a global
symbol from being both a variable name and a function name. When
such a situation arises, the linker will issue the "multiply defined
symbol" message, regardless of the use of the -M option.

3.10 Data formats
3.10.1 char

Variables of type char are one byte long, and can be signed or
unsigned. By default, a char variable is unsigned.

When a signed char variable is used in an expression, it’s converted
to a 16-bit integer by propagating the most significant bit. Thus, a char
variable whose value is between 128 and 255 will appear to be a
negative number if used in an expression.

When an unsigned char variable is used in an expression, it’s
converted to a 16-bit integer in the range 0 to 255.

A character in a char is in ASCII format.
3.10.2 pointer

Pointer variables are two bytes long.
3.10.3 int, short

Variables of type short and int are two bytes long, and can be signed
or unsigned.

A negative value is stored in two’s complement format. A -2 stored
at location 100 would look like:

location contents in hex
100 FE
101 FF
3.10.4 long

Variables of type long occupy four bytes, and can be signed or
unsigned.

Negative values are stored in two’s complement representation.
Longs are stored sequentially with the least significant byte stored at
the lowest memory address and the most significant byte at the highest
memory address.

3.10.5 float

A float variable is represented internally by a sign flag, a base-256
exponent in excess-64 notation, and a three-character, base-256
fraction. All variables are normalized.

-ccl7 -

COMPILERS Aztec CG6S

The variable is stored in a sequence of four bytes. The most
significant bit of byte 0 contains the sign flag; 0 means it’s positive, 1
negative,

The remaining seven bits of byte 0 contain the excess-64 exponent.

Bytes 1,2, and 3 contain the three-character mantissa, with the most
significant character in byte 1 and the least in byte 3. The ’decimal
point’ is to the left of the most significant byte.

As an example, the internal representation of decimal 1.0 is 41 0l
00 00.

3.10.6 Doubles

A floating point number of type double is represented internally by
a sign flag, a base-256 exponent in excess-64 notation, and a seven-
character, base-256 fraction.

The variable is stored in a sequence of eight bytes. The most
significant bit of byte 0 contains the sign flag; 0 means positive, 1
negative,

The excess-64 exponent is stored in the remaining seven bits of
byte 0.

The seven-character, base-256 mantissa is stored in bytes 1 through
7, with the most significant character in byte 1, and the least in byte 7.
The "decimal point" is to the left of the most significant character.

As an example, (256**3)*(1/256 + 2/256**2) is represented by the
following bytes: 43 01 02 00 00 00 00 Q0.

For accuracy, floating point operations are performed using
mantissas which are 16 characters long. Before the value is returned to
the user, it is rounded.

3.11 Floating Point Exceptions

When a C program requests that a floating point arithmetic
operation be performed, a call will be made to functions in the floating
point support software.

While performing the operation, these functions check for the
occurrence of the floating point exception conditions; namely,
overflow, underflow, and division by zero. On return to the caller, the
global integer flterr indicates whether an exception has occurred:

Slterr value returned meaning
0 computed valueno error has occurred
1 +/-29e-157 underflow
2 +/- 5.2¢el151 overflow
3 +/- 5.2¢151 division by zero

-cc.18 -

Aztec CG65 COMPILERS

If the value of flterr is zero, no error occurred, and the value
returned is the computed value of the operation. Otherwise, an error
has occurred, and the value returned is arbitrary. The table lists the
possible settings of flterr, and for each setting, the associated value
returned and the meaning.

When a floating point exception occurs, in addition to returning an
indicator in flterr, the floating point support routines will either log an
error message to the console or call a user-specified function. The
error message logged by the support routines define the type of error
that has occurred (overflow, underflow, or division by zero) and the
address, in hex, of the instruction in the user’s program which follows
the call to the support routines.

Following the error message or call to a user function, the floating
point support routines return to the user’s program which called the
support routines.

To determine whether to log an error message itself or to call a
user’s function, the support routines check the first pointer in Sysvec,
the global array of function pointers. If it contains zero (which it will,
unless the user’s program explicitly sets it), the support routines log a
mess;lge; otherwise, the support routines call the function pointed at by
this field.

A user’s function for handling floating point exceptions can be
written in C. The function can be of any type, since the support
routines don’t use the value returned by the user’s function. The
function has two parameters: the first, which is of type int, is a code
identifying the type of exception which has occurred. The value 1
indicates underflow, 2 overflow, and 3 division by zero.

The second parameter passed to the user’s exception-handling
routine is a pointer to the instruction in the user’s program which
follows the call instruction to the floating point support routines. One
way to use this parameter would be to declare it to be of type int. The
user’s routine could then convert it to a character string for printing in
an error message.

The example below demonstrates how floating point errors can be
trapped and reported. In main, a pointer in the Sysvec array is set to
the routine, usertrap. If a floating point exception occurs during the
execution of the program, this routine is called with the arguments
described above. The error handling routine prints the appropriate
error message, and returns to the floating point support routines.

- ¢cc.19 -

COMPILERS Aztec CG6S

#include <stdio.h>

main() { .
Sysvec| FLT _FAULT] = usertrap;

usertrap(errcode,addr)
int errcode,addr;

{
char buff[4];

switch (errcode) {
case ’1”
printf("floating point underflow at %x\ n",buff);
break;
case "2"
printf("floating point overflow at %x\n",buff);
break;
case ’3”
printf("division by zero at %x\n", buff);
break;
default
printf("usertrap: invalid code %d \n", errcode);
break;
}

3.12 Register Variables

A cg65-compiled program can have up to eight register variables.
A cci-compiled program can declare variables to be of type register, but
the compiler will ignore the declaration.

3.13 In-Line Assembly Language Code

Assembly language source can be included in a C program, by
surrounding the assembly language code with the preprocessor
directives #asm and #endasm.

When the compiler encounters a #asm statement, it copies lines
from the C source file to the assembly language file that it’s
generating, until it finds a #endasm statement. The #asm and
#endasm statements are not copied.

While the compiler is copying assembly language source, it doesn’t
try to process or interpret the lines that it reads. In particular, it won’t
perform macro substitution.

A program that uses #asm ..#endasm must avoid placing in-line
assembly code immediately following an if block; that is, it should
avoid the following code:

- cc.20 -

Aztec CG65 COMPILERS
if ()¢
)

#asm
#endasm

The code generated by the compiler will test the condition and if false
branch to the statement following the #endasm instead of to the
beginning of the assembly language code. To have the compiler
generate code that will branch to the beginning of the assembly
language code, you must include a null statement between the end of
the if block and the asm statement:

if ()
-
#asm

#endasm

3.14 Writing machine-independent code

The Aztec family of C compilers are almost entirely compatible.
The degree of compatibility of the Aztec C compilers with v7 C,
system 3 C, system 5 C, and XENIX C is also extremely high. There
are, however, some differences. The following paragraphs discuss
things you should be aware of when writing C programs that will run
in a variety of environments,

If you want to write C programs that will run on different
machines, don't use bit fields or enumerated data types, and don’t pass
structures between functions. Some compilers support these features,
and some don’t.

3.14.1 Compatibility Between Aztec Products

Within releases, code can be easily moved from one
implementation of Aztec C to another. Where release numbers differ
(i.e. 1.06 and 2.0) code is upward compatible, but some changes may
be needed to move code down to a lower numbered release. The
downward compatibility problems can be eliminated by not using new
features of the higher numbered releases.

3.14.2 Sign Extension For Character Variables

If the declaration of a char variable doesn’t specify whether the
variable is signed or unsigned, the code generated for some machines
assumes that the variable is signed and others that it's unsigned. For

-cc.21 -

COMPILERS Aztec CG65S

example, none of the 8 bit implementations of Aztec C sign extend
characters used in arithmetic computations, whereas all 16 bit
implementations do sign extend characters. This incompatibility can be
corrected by declaring characters used in arithmetic computations as
unsigned, or by AND’ing characters used in arithmetic expressions
with 255 (0xff). For instance:

char a=129;

int b;

b = (a & Oxff) * 21;
3.14.3 The MPU... symbals

To simplify the task of writing programs that must have some
system dependent code, each of the Aztec C compilers defines a
symbol which identifies the machine on which the compiler-generated
code will run. These symbols, and their corresponding processors, are:

symbol processor
MPU68000 68000
MPU8086 8086/8088
MPUS80186 80186/80286
MPU6502 6502
MPU8080 8080
MPUZ80 Z80

Only one of these symbols will be defined for a particular compiler.

For example, the following program fragment contains several
machine-dependent blocks of code. When the program is compiled for
execution on a particular processor, just one of these blocks will be
compiled: the one containing code for that processor.

#ifdef MPU68000
/¥ 68000 code */

#else

#ifdef MPUB8086
/* 8086 code */

#else

#ifdef MPUS8080
/* 8080 code */

#endif

#endif

#endif

-cc.22 -

Aztec CG65 COMPILERS
4. Error checking

Compiler errors come in two varieties-- fatal and not fatal. Fatal
errors cause the compiler to make a final statement and stop. Running
out of memory and finding no input are examples of fatal errors. Both
kinds of errors are described in the Errors chapter. The non-fatal sort
are introduced below.

The compiler will report any errors it finds in the source file. It
will first print out a line of code, followed by a line containing the
up-arrow (caret) character. The up-arrow in this line indicates where
the compiler was in the source line when it detected the error. The
compiler will then display a line containing the following:

* The name of the source file containing the line;

* The number of the line within the file;

* An error code;

* The symbol which caused the error, when appropriate.

The error codes are defined and described in the Errors chapter.

The compiler writes error messages to its standard output. Thus,
error messages normally go to the console, but they can be associated
with another device or file by redirecting standard output in the usual
manner. For example,

¢gb5 prog errors sent to the console
cgb5 prog >outerr errors sent to the file outerr

The compiler normally pauses after every fifth error, and sends a
message to its standard output asking if you want to continue. The
compiler will continue only if you enter a line beginning with the
character ’y’. If you don’t want the compiler to pause in this manner,
(if, for example, the compiler’s standard output has been redirected to
a file) specify the -B option when you start the compiler.

The compiler is not always able to give a precise description of an
error. Usually, it must proceed to the next item in the file to ascertain
that an error was encountered. Once an error is found, it is not
obvious how to interpret the subsequent code, since the compiler
cannot second-guess the programmer’s intentions. This may cause it to
flag perfectly good syntax as an error.

If errors arise at compile time, it is a general rule of thumb that the
very first error should be corrected first. This may clear up some of
the errors which follow.

The best way to attack an error is to first look up the meaning of
the error code in the back of this manual Some hints are given there
as to what the problem might be. And you will find it easier to
understand the error and the message if you know why the compiler
produced that particular code. The error codes indicate what the
compiler was doing when the error was found.

- ¢cc.23 -

COMPILERS Aztec CG65

- ¢c.24 -

THE ASSEMBLERS

- as.l -

ASSEMBLERS Aztec CG65S

Chapfer Contents

TRE ASSEIMDICTS ..oovivviiieens et istesesseessareessessesnsssassssssesasssessesasrsssessesn as
1. Operating INStIUCLIONScoceriveeeeeereenen sevesresseesesseesssssecssessessessssssssonnens 3
1.1 THE SOUICE FIIE ...ococeeceiierecrrerentessenenterserinsssesssssasessnessssssnenesns 3

1.2 The Object Code Fileerceie e ereerenensseeresesatessanene 4

1.3 LiStiNG File oot et ctre e st se e s e nese e saesesanresasaanessonsnes 4

1.4 Searching {Or iStxt FIIESuuvieerrereverrrreeresrenesssaessessssssssssess 4

2. ASSEMDIET OPONS ..cvviveeriieireerinne svereesnsvesssssssssssssssssnesessessossssssassnsssrans 5

3. Programmer iNfOrMatiONocoeevrirereermsesrerenssemsessssssrsnesisssssssssssessens 5

- as.2 -

Aztec CG65 ASSEMBLERS

The Assemblers

as65 and asi are relocating assemblers that translate an assembly
language source program into relocatable object code. The two
assemblers support different machines: as65 accepts assembly language
for a 6502 or 65c02; asi accepts assembly language for a "pseudo
machine”,

In an executable program, an agsi-assembled module must be
interpreted by a routine that is in the Aztec libraries.

An executable program can contain both modules that have been
assembled with as65 and modules that have been assembled with asi.

This description has three sections: the first describes how to
operate the assembler; the second describes the assembler’s options;
and the third presents information of interest to those writing
assembly language programs.

1. Operating Instructions

Operationally, the two assemblers are very similar. In the following
paragraphs, we will use the name as65 when referring to features that
arc common to both assemblers. When the two assemblers differ, we
will say so.

as65 is started with a command line of the form
as65 [-options) prog.asm

where [-options] are optional parameters and prog.asm is the name of
the file to be assembled. as65 reads the source code from the specified

file, translates it into object code, and writes the object code to another
file.

1.1 The Source File

The extension on the source file name is optional. If not specified,
it’s assumed to be .asm. For example, with the following command,
the compiler will assume that the file name is test.asnt

asb5 test

as65 will append .asm to the source file name only if it doesn’t find
a period in the file name. So if the name of the source file really
doesn’t have an extension, you must compile it like this:

as65 filename.
The period tells the assembler not to append .asm to the name.

- as.3 -

ASSEMBLERS Aztec CG6S

1.2 The Object File

By default, the name of the file to which as65 writes object code is
derived from the name of the source code file, by changing its
extension to .r (or to .7, if asi is used). Also by default, the object code
file is placed in the directory that contains the source code file. For
example, the command

as65 test.asm

writes object code to the file test.r (or to testi, if asi is used), placing
this file in the current directory.

You can explicitly specify the name of the object code file, using
the -O option. The name of the object code file follows the -0, with
spaces between the -O and the file name. For example, the following
command assembles fest.asm, writing the object code to the file
prog.out.

as -0 prog.out test.asm
1.3 The Listing File

The -L option causes the assembler to create a file containing a
listing of the program being assembled. The file is placed in the
directory that contains the object file; its name is derived from that of
the object file by changing the extension to .Ist.

1.4 Searching for instxz files

The instxt directive tells as65 to suspend assembly of one file and
assemble another; when assembly of the second file is completed,
assembly of the first continues.

You can make the assembler search for instxt files in a sequence of
directories, thus allowing source files and insext files to be in different
directories.

Directories that are to be searched are defined just as for the
compilers; that is, using the -I assembler option and the INCL65
environment variable. Optionally, the compiler can also search the
current directory.

Directory search for a particular instxt directive can be disabled by
specifying a directory name in the directive. In this case, just the
specified directory is searched.

1.4.1 The -1 option

A -I option defines a single directory to be searched. The directory
name follows the -I, with no intervening blanks. For example, the
following -I option tells the assembler to search the /ram/include
directory:

- as.4 -

Aztec CG65 ASSEMBLERS

-I/ram/include
1.4.2 The INCL6S environment variable,

The INCL65 environment variable defines a directory to be
searched for instxt files. The value of this variable is the name of the
directory to be searched.

The command that is used to set environment variables varies from
system to system. For example, on PCDOS the following command
sets INCL6S so that the directory \CG65\ INCLUDE is searched for
include files:

set INCL65=\CG65\INCLUDE

For a description of the command that’s used on your system to set
environment variables, see your operating system manual.

1.4.3 The search order
Directories are searched in the following order:

1. If the instxt directive delimited the file name with the double
quote character, ", the current directory on the default drive
is searched. If delimited by angle brackets, < and >, this
directory isn’t automatically searched.

2. The directories defined in -I options are searched, in the
order listed on the command line.

3. The directory defined in the INCL65 environment variable is
searched.

2. Assembler Options
The assembler supports the following options:

Option Meaning

-0 objname Send object code to objname.

-L Generate listing.

-C Disable assembly of 65C02 instructions. Not
supported by asi.

-ZAP Delete the source file after assembling it.

3. Programming Information

This section discusses the assembly language that is supported by
as65. A description of the assembly language supported by asi is not
available.

as65 supports the standard MOS Technology syntax: a program
consists of a sequence of statements, each of which is in the standard
MOS Tech form; and the assembler supports the MOS Tech
mnemonics for the standard instructions. as65 supports some of the
MOS Tech directives and their mnemonics; it also supports others, as

- as.5 -

ASSEMBLERS Aztec CG65

defined below.

The following paragraphs define in more detail the language
supported by asé5.

3.1 Statement Syntax

[label] [opcode] [arguments] [[;]comment]
where the brackets "[...]" indicate an optional element.
3.2 Labels

A statement’s label field defines a symbol to the assembler and
assigns it a value. If present, the symbol name begins in column one.
If a statement is not labeled, then column one must be a blank, tab, or
asterisk. An asterisk denotes a comment line.

Normally, the symbol in a label field is assigned as its value the
address at which the statement’s code will be placed. However, the equ
directive can be used to create a symbol and assign it some other
value, such as a constant.

A label can contain up to 32 characters. Its first character must be
an alphabetic character or one of the special characters *__* or °.’. Its
other characters can be alphabetic characters, digits,*_’, or°.". A label
followed by "#" is declared external

The compilers place a’__’ character at the end of all labels that they
generate.

3.3 Opcodes

The assembier supports the standard MOS Tech instruction
mnemonics for both the 6502 and 65C02 processors. The directives it
supports are defined below.

3.4 Arguments

A statement’s arguments can specify a register, a memory location,
or a constant.

A memory location can be referenced using any of the standard
6502 or 65C02 addressing modes, and using the standard MOS Tech
syntax.

A memory location reference or a constant can be an expression
containing any of the following operators:

- as.6 -

Aztec CG65 ASSEMBLERS

multiply

divide

add

subtract

constant

constant

low byte of expression
high byte of expression

VAL ' +>~ #

"Expressions are evaluated from left to right with no precedence as
to operator or parentheses.

3.5 Constants

The default base for numeric constants is decimal Other bases are
specified by the following prefixes or suffixes:

Base Prefix Suffix
2 % b,B
8 @ 0,0,q,Q
10 null,& null
16 3 h,H

A character constant consists of the character, preceded by a single
quote. For example: ’A.

3.6 Directives

The following paragraphs describe the directives that are supported
by the assembler.

END
end
The end directive defines the end of the source statements.
CSEG
cseg

The cseg directive selects a module’s code segment. information
generated by statements that follow a cseg directive is placed in
the module’s code segment, until another segment-selection
directive is encountered.

DSEG
dseg

The dseg directive selects a module’s data segment information
generated by statements that follow a dseg directive is placed in
the module’s data segment, until another segment-selection
directive is encountered.

- as.7 -

ASSEMBLERS Aztec CG65

EQU
symbol equ . <expr>

The equ directive creates a symbol named symbol (if it doesn’t
already exist), and assigns it the value of the expression expr.

PUBLIC
public <symbol>[,<symbol>...]

The public directive identifies the specified symbols as having
external scope. If a specified symbol was created in the within
the module that’s being assembled (by being defined in a
statement’s label field), this directive allows it to be accessed by
other modules. If a symbol was not created within the module
that’s being assembled, this directive tells the assembler that the
symbol was created and made public in another module.

bss <symname>,<size>

The bss directive creates a symbol named symname and reserves
size bytes of space for it in the uninitialized data segment. The
symbol cannot be accessed by other modules.

GLOBAL
global <symnam><size>

The global directive creates a symbol named symmam that other
modules can access using the global and public directives.

If other modules create symnam using just the global directives,
then symnam will be located in a program’s uninitialized data
area. In this case, the amount of space reserved in this area for
symnam will equal the largest value specified by the size fields in
the global statements that define symnam.

If other modules define symnam in a public statement, but none
of them create symnam (by specifying it in a label field), then
symnam will still be located in the uninitialized data segment and
space will be reserved for it as defined above.

If one module both defines symmam using a public statement and
creates the symbol by specifying it in a label field, then synmam
will be located in the program’s code or data segment and no
space will be reserved for it in the uninitialized data segment.

ENTRY
entry <symnam>

The entry directive defines the symbol symmam as being a
program’s entry point.

- as.8 -

Aztec CG65 ASSEMBLERS

When a program is linked, the linker normally places a jump
instruction at the program’s base address. If the linker finds a
module containing an entry directive, it sets the target of the
jump to the location that was specified in the last entry directive
that it found; otherwise, it sets the target to the beginning of the
program’s code segment.

FCB
[label] feb <value>[,<value>, <value> ...]

Each value in an fcb directive causes one or more bytes of
memory to be allocated and then initialized to the specified
value. The memory is allocated in the currently active segment
(code or data, as defined by the last segment-selection directive).

[label] fdb <value>[,<value>, <value> ...]

The fdb directive is like fcb, except that each value causes a two-
byte field of memory to be allocated and initialized.

FCC
[label] fec "string”

The fcc directive allocates a field that has the same number of
characters as are in string, and places string in it. The field is
placed in the currently-active segment.

RMB
[label] rmb <expr>

The rmb directive reserves a field containing expr bytes in the
currently-active segment. The contents of the field are not
defined.

INSTXT

instxt <file>
nstxt "file”
nstxt / file/

The instxt directive causes the assembler to suspend assembly of
the current source file and to assemble the source that's in file.
When done, the assembler will continue assembling the original
file.

The assembler can search for a file in several directories. If file
is surrounded by quotes or slashes, the assembler will begin the
search at the current directory; it will then search directories
specified in the -1 option and the INCL65 environment variable.
If file is surrounded by <>, the assembler will search just the -I
and INCL6S directories.

- as9 -

ASSEMBLERS Aztec CG65

- as.10 -

THE LINKER

-In.1-

LINKER Aztec CG65

Chapter Contents

The Linker t rereseesesesesssestesirtestsereans s srast s sanar e eae e sreesensanas e st rasare In
1. Introduction to HNKINEcoeveeeercnceenrensencscnessonssscasmsaeneesesssesesessssans 3
2. USIOG the LINKET ouveeeceieirieies cetreireeisessesereesesisessssessesessssessesesensessaes 7
3. LiINKET OPLONS ...coveeeerreierernese seererannesssessesssassessstessssssesessnsssssessesesasseseses 9

-In.2-

Aztec CG6S LINKER

The Linker

The In65 linker has two functions:

* It ties together the pieces of a program which have been
compiled and assembled separately;

* It converts the linked pieces to a format which can be loaded
and executed.

The pieces must have been created by the Manx assembler.

The first section of this chapter presents a brief introduction to
linking and what the linker does. If you have had previous experience
with linkage editors, you may wish to continue reading with the
second section, entitled "Using the Linker." There you will find a
concise description of the command format for the linker.

1. Introduction to linking
Relocatable Object Files

The object code produced by the assembler is "relocatable” because
it can be loaded anywhere in memory. One task of the linker is to
assign specific addresses to the parts of the program. This tells the
operating system where to load the program when it is run.

Linking hello.r

It is very unusual for a C program to consist of a single, self-
contained module. Let’s consider a simple program which prints "hello,
world" using the function, printf. The terminology here is precise;
printf is a function and not an intrinsic feature of the language. It is a
function which you might have written, but it already happens to be
provided in the file, ¢./ib. This file is a library of all the standard i/o
functions. It also contains many support routines which are called in
the code generated by the compiler. These routines aid in integer
arithmetic, operating system support, etc.

When the linker sees that a call to printf was made, it pulls the
function from the library and combines it with the "hello, world"
program. The link command would look like this:

In65 hello.r c.lib

When hello.c was compiled, calls were made to some invisible support
functions in the library. So linking without the standard library will
cause some unfamiliar symbols to be undefined.

-In.3-

LINKER Aztec CG6S

The modules in c.lib have been compiled with the native code
compiler, cg65. You can alternatively link your programs with cilib,
which has the same modules as c.ib, except that they have been
compiled with cgi instead of cg65.

The Linking Process

Since the standard library contains only a limited number of
general purpose functions, all but the most trivial programs are certain
to call user-defined functions. It is up to the linker to connect a
function call with the definition of the function somewhere in the
code.

In the example given below, the linker will find two function calls
in file 1. The reference to funcl is "resolved” when the definition of
funcl is found in the same file. The following command

In65 filel.r c.lib

will cause an error indicating that func2 is an undefined symbol. The
reason is that the definition of func2 is in another file, namely file2.r.
The linkage has to include this file in order to be successful:

In6S5 filel.r file2.r c.lib

Jile 1 file 2

main() func2()
funcl(); return;
func2(); }

}

funcl()

{
return,

}

Libraries

A library is a collection of object files put together by a librarian.
Libraries intended for use with [n65 must be built with the Manx
librarian, /b. This utility is described in the Utility Programs chapter.

All object files specified to the linker will be "pulled into" the
linkage; they are automatically included in the final executable file.
However, when a library is encountered, it is searched. Only those
modulcs in the library which satisfy a previous function call are pulled
mn.

For Example

Consider the "hello, world" example. Having looked at the module,
hello.r, the linker has built a list of undefined symbols. This list
includes all the global symbols that have been referenced but not

-In4 -

Aztec CG6S LINKER

defined. Global variables and all function names are considered to be
global symbols.

The list of undefined symbols for hello.r includes the symbol printf.
When the linker reaches the standard library, this is one of the symbols
it will be looking for. It will discover that printf is defined in a library
module whose name also happens to be printf (There is not any
necessary relation between the name of a library module and the
functions defined within it).

The linker pulls in the printf module in order to resolve the
reference to the printf function.

Files are examined in the order in which they are specified on the
command line. So the following linkages are equivalent

In65 hello.r
In65 c.lib hello.r

Since no symbols are undefined when the linker searches c.lib in the
second line, no modules are pulled in. It is good practice to leave all
Jlibraries at the end of the command line, with the standard library last
of all

The Order of Library Modules

For the same reason, the order of the modules within a library is
significant. The linker searches a library once, from beginning to end.
If a module is pulled in at any point, and that module introduces a new
undefined symbol, then that symbol is added to the running list of
undefineds symbols. The linker will not search the library twice to
resolve any references which remain unresolved. A common error lies
in the following situation:

module of program re ferences (function calls)
main.r getinput, do__calc
input.r gets

calc.r put__value

output.r printf

Suppose we build a library to hold the last three modules of this
program. Then our link step will look like this:

In65 main.r proglib.lib c.lib

But it is important that proglib.lib is built in the right order. Let’s
assume that main() calls two functions, getinput() and do_ calc().
getinput() is defined in the module input.r. It in turn calls the standard
library function gets(). do__cale() is in calc.r and calls put _value().
put_value(') is in output.r and calls printf().

What happens at link time if proglib.lib is built as follows?

-1n.5 -

LINKER Aztec CG65

proglib.lib: input.r
outputr
cak.r

After main.r, the linker has getinput and do__calc undefined (as well as
some other support functions in c.4b). Then it begins the search of
proglib.lib. It looks at the library module, nput, first. Since that module
defines getinput, that symbol is taken off the list of undefined’s. But
gets is added to it.

The symbols do__calc and gets are undefined when the linker
examines the module, output. Since neither of these symbols is defined
there, that module is ignored. In the next module, calc, the reference
to do__calc is resolved but put_ value is a new undefined symbol.

The linker still has gets and put__value undefined. It then moves on
to clib, where gets is resolved. But the call to put_ value is never
satisfied. The error from the linker will look like this:

Undefined symbol: put__value__

This means that the module defining put__value was not pulled into the
linkage. The reason, as we saw, was that pwt value was not an
undefined symbol when the owtput module was passed over. This
problem would not occur with the library built this way:

proglib.lib: input.r
cale.r
output.r

The standard libraries were put together with much care so that this
kind of problem would not arise.

Occasionally it becomes difficult or impossible to build a library so
that all references are resolved. In the example, the problem could be
solved with the following command:

In65 main.r proglib.lib proglib.lib c.lib

The second time through proglib.lib, the linker will pull in the
module output. The reason this is not the most satisfactory solution is
that the linker has to search the library twice; this will lengthen the
time needed to link.

-In.6 -

Aztec CG65 LINKER

2. Using the Linker
The general form of a linkage is as follows:
In65 [-options] filel.r [file2.r ...] [libl.lib ...]

The linker combines object modules produced by the as65 and/or
asi assemblers into an executable program. It can search libraries of
object modules for functions needed to complete the linkage; including
just the needed modules in the executable program. The linker makes
just a single pass through a library, so that only forward references
within a library will be resolved.

The executable file

The name of the executable output file can be selected using the -O
linker option. If this option isn’t used, the linker will derive the name
of the output file from that of the first object file listed on the
command line, by deleting its extension. In the default case, the
executable file will be located in the directory in which the first object
file is located. For example,

In65 prog.r c.lib

will produce the file prog. The standard library, c.lib, will have to be
included in most linkages.

A different output file can be specified with the -O option, as in
the following command:

In65 -0 program modl.r mod2.r c.lib

This command also shows how several individual modules can be
linked together. A "module”, in this sense, is a section of a program
containing a limited number of functions, usually related. These
modules are compiled and assembled separately and linked together to
produce an executable file.

Libraries

Function source is provided with CG65, with which you can
generate several libraries. Two of these libraries are c.lib and cilib,
which contain general-purpose functions. The other two are m.lib and
mi.lib, which contain floating point functions. The modules in c.lib and
m.lib have been compiled with the native code compiler, while those in
ci.lib and mi.lib have been compiled with the pseudo code compiler.

All programs must be linked with one of the versions of c./ib. In
addition to containing 6502 versions of all the non-floating point
functions described in the Functions chapter, it contains internal
functions which are called by compiler-generated code, such as
functions to perform long arithmetic.

Programs that perform floating point operations must be linked
with one of the versions of m.lib, in addition to a version of c.lib. The

-1n.7 -

LINKER Aztec CG65
floating point library must be specified on the linker command line
before c.lib.

You can also create your own object module libraries using the /b
program. These libraries must be listed on the linker command line
before the Manx libraries.

For example, the following links the module program.r, secarching
the libraries mylib.lib, new.lib, m.lib, and c.lib for needed modules:

In65 program.r mylib.lib new.lib m.lib c.lib

Each of the libraries will be searched once in the order in which
they appear on the command line.

Libraries can be conveniently specified using the -L option. For
example, the following command is equivalent to the following:

In65 -0 program.r -Imylib -lnew -Im -Ic

For more information, see the description of the -L option in the
Options section of this chapter.

Aztec CG65

LINKER

3. Linker Options
3.1 Summary of options
3.1.1 General Purpose Options

-0 file
-Lname
-F file

Write executable code to the file named file.
Search the library name.lib for needed modules.
Read command arguments from file.

Generate a symbol table file.

Don’t issue warning messages.

Don’t abort if there are undefined symbols.

Be verbose.

3.1.2 Options for Segment Address Specification

-B addr
-C addr

-D addr

-U addr

Set the program’s base address to the hex value addr.

Set the starting address of the program’s code segment
to the hex value addr.

Set the starting address of the program’s data segment
to the hex value addr.

Set the starting offset of the program’s uninitialized
data segment to the hex value addr.

3.1.3 Options for Overlay Usage

-R

+C size

+D size

Create a symbol table to be used when linking
overlays.

Reserve size bytes at end of the program’s code
segment (the overlay’s code segment is loaded here).
size is a hex value.

Reserve size bytes at end of the program’s initialized
and uninitialized data segments (the overlay’s data is
loaded here). size is a hex value.

3.1.4 65xx Options
+H startend Define a hole in the program, whose beginning and

ending addresses are the hex values start and end.

-In.9 -

LINKER Aztec CG65

3.2 Detailed description of the options
3.2.1 General Purpose Options:
The -O option

The -O option can be used to specify the name of the file to which
the linker is to write the executable program. The name of this file is
in the parameter that follows the -O. For example, the following
command writes the executable program to the file progout

In6é5 -0 progout prog.o c.lib

If this option isn’t used, the linker derives the name of the
executable file from that of the first input file, by deleting its
extension.

The -L option

The -L option provides a convenient means of specifying to the
linker a library that it should search, when the extension of the library
is .lib.

The name of the library is derived by concatenating the value of
the environment variable CLIB6S, the letters that immediately follow
the -L option, and the string .lib. For example, with the libraries
subs.lib, io.lib, m.lib, and c.lib in a directory specified by CLIB635, you
can link the module prog.o, and have the linker search the libraries for
needed modules by entering

In65 prog.o -Isubs -lio -Im -lc

The command that sets CLIB65 varies from system to system. On
PCDOS, the set command is used. For example, the following
command defines CLIB65 when the libraries are in the directory
/cg65/lib:

set CLIB65=/cg65/1ib/

Note the terminating slash on the CL/B65 variable: this is required
since the linker simply prepends the value of the CLIB65 variable to
the -L string.

The -F option

-F file causes the linker to merge the contents of the given file with
command line arguments. For example, the following command causes
the linker to create an executable program in the file myprog. The
linker includes the modules myprog.o, modl.o, and rmod2.0 in the

program, and searches the libraries mylib.lib and c.kib for needed
modules.

In65 myprog.o -f argfil c.lib
where the file argfil, contains the following:

- In.10 -

Aztec CG65 LINKER

modl.o mod2.0
mylib.lib

The linker arguments in argfile can be separated by tabs, spaces, or
newline characters.

There are several uses for the -F option. The most obvious is to
supply the names of modules that are frequently linked together. Since
all the modules named are automatically pulled into the linkage, the
linker does not spend any time in searching, as with a library.
Furthermore, any linker option except -F can be given in a -F file. -F
can appear on the command line more than once, and in any order.
The arguments are processed in the order in which they are read, as
always. ’

The -T option

The -T option causes the linker to write a program’s symbol table to
a file. You must specify this option if the generated program is going
to be converted into Intel hex records by hex65.

_ Each line of the symbol table file contains a symbol name and its
address.

The symbol table file will have the same name as that of the file
containing the executable program, with extension changed to .sym.

) There are several special symbols which will appear in the table.
They are defined in the Memory Organization section of the Technical
Information chapter.

The -M option

The linker issues the message "multiply defined symbol" when it
finds a symbol that is defined with the assembly language directives
global or public in more than one module. The -M option causes the
linker to suppress this message unless the symbol is defined in more
than one public directive.

To maintain compatibility with previous versions of Aztec C, the
linker will generate code for a variable that is defined in multiple
global statements and in at most one public statement, and also issue the
"multiply defined symbol" message. Thus, if you use the global and
public directives in this way, and don’t want to get this message, use
the -M option to suppress them.

The definition of a symbol in more than one public directive is
never valid, so the -M option doesn’t suppress messages in this case.

For more information, see the discussion on global symbols in the
Programmer Information sections of the Compiler and Assembler
chapters.

- In.11 -

LINKER Aztec CG65

The -N option

Normally, the linker halts without generating an executable
program if there are undefined symbols, The -N option causes the
linker to go ahead and generate an executable program anyway.

The -V option

The -V option causes the linker to send a progress report of the
linkage to the screen as each input file is processed. This is useful in
tracking down undefined symbols and other errors which may occur
while linking.

3.2.2 Options for segment address specification

The linker organizes a program into three segments code,
initialized data, and uninitialized data arcas. You can define the
starting address of these segments using the -C, -D, and -U linker
options, respectively. A fourth linker option, -B, will set the "base
address” of the program. These options are followed by the desired
offset, in hex.

By default, the base address of a program is 0x800. Also by default,
a program’s code segment starts three bytes after the base address, its
initialized data segment follows the code, and its uninitialized data
follows the initialized data.

A file created by the linker begins with a 4-byte header; this is
followed by a memory image of the program, from its base address
through the end of its code or initialized data segments (whichever is
higher). This image can be loaded into memory, with the first byte in
the file loaded at the program’s base address.

The base address

By default, the linker assumes that a program will begin execution
at its base address, and so creates a jump instruction and places it at the
program’s base address. This jump instruction, when executed,
transfers control to the program’s startup routine, which is usually
somewhere in the middle of the program’s code segment A startup
routine performs initialization activities and then calls the program’s
main function.

The linker won't generate the base address jump instruction if
there isn’t room for it in program’s memory image; that is, if the
segment (code, initialized data, or uninitialized data) that is closest to
the base address begins less than three bytes above the base address.

The startup routine

A program’s startup routine is defined using the assembly language
entry directive. If, among the modules that are linked together into an
executable program, the linker finds one that contains the entry
directive, the location specified in that directive is used as the

-In.12-

Aztec CG65 LINKER

program’s entry point. If none of the linked modules contain an entry
directive, the start of the program’s code segment is used as the
program’s entry point.

The presence of an entry directive in a library module, however,
does not cause the linker to include that module in a program that it’s
building Inclusion of a library module in a program is caused only
when one of the module’s globally-accessible symbols (defined by
specifying the symbol in a public directive) is also on the linker’s list of
undefined symbols.

For example, the rom startup routine contains the directives public
.begin and entry .begin. By default, the compiler generates a reference
to .begin when it compiles any module; this reference causes the linker,
when it encounters the rom module in c.lib, to include the rom module
in the program it’s building; the module’s entry .begin directive then
causes the linker to define .begin as the program’s entry point.

Example 1

In a typical 65xx ROM system, the ROM is at the top of the
memory space, and the RAM is at the bottom. The fields in the 65xx
memory space between Oxfffa and Oxffff contain pointers of locations
to which the 65xx will transfer control upon the occurrence of special
events such as power-up, system reset, and receipt of an interrupt.
Hence the code for a 65xx ROM system is usually placed near the top
of memory, so that the same ROM can contain both the program’s
code and the special pointers. Pages 0 and 1, which occupy memory
locations 0 through Oxff and 0x100 through OxIff, are special on a
65xx, and always contains RAM. Hence the data for a 65xx ROM
system is usually placed just above pages 0 and 1, so that the same
RAM that is used for these two pages can also hold the program’s data.

Since, on a typical ROM system, the two bytes beginning at 0xfffc
contain the address to which the processor will transfer control on
system reset or power-up, there is no need for the linker’s base address
jump instruction. So for a typical ROM system, the base address and
the beginning of the data segments are set to the same value.

For example, the following command creates the memory image of
a program that will be burned into ROM, where its code begins at
0xf000, its initialized data at 0x200, its uninitialized data immediately
following the initialized data:

Iné5 -b 200 -d 200 -¢ f000 prog.r -Ic
Example 2

In some cases, a ROM program fits into another ROM system; a
system whose ROM occupies the high section of memory, handling
interrupts, power-up, etc, and whose RAM occupies the low section of
memory. In this case, the add-on ROM program will fit somewhere in

-In.13 -

LINKER Aztec CG65

the middle of the 65xx memory space, with its code beginning at a
known place so that separately-linked ROM programs can access it by
issuing a call to that known place. If, in this case, the add-on
program’s code is below its data, use can be made of the linker’s
generation of a jump instruction at the program’s base address to the
program’s entry point. That is, the program’s base address is set to that
known address, the beginning of the program’s code segment is set
three bytes past the base address, and the program’s data segments are
placed somewhere above the code segment.

For example, the following command links such a program, where
its base address begins at 0x8000, its code at 0x8003, its initialized data
at 0xa000, and its uninitialized data immediately after the initialized
data:

1n65 -b 8000 -d a000 progr -lc

It wasn’t necessary to use the -C option to explicitly specify the
starting address of the code segment; by default, it starts three bytes
after the base address.

Example 3

In this example, we want to modify the example 2 program slightly,
so that the program’s data is below its code. In this case, you can’t
make use of the linker’s automatic generation of a jump instruction to
the program’s entry point, since this instruction won’t be burned into
ROM.

For this, you must explicitly specify the module that contains the
program’s entry point, as the first module to be linked, which causes
the linker to place it at the beginning of the program’s code segment.
And you must explicitly tell the linker that the program’s code
segment begins at the program’s "known address"; that is, the address
that other programs will call to access the program. For example, the
following command links a program so that its code begins at 0x8000,
its initialized data at 0x4000, and its uninitialized data right after the
initialized data:

In65 -b 4000 -d 4000 -c 8000 -0 prog rom.r prog.r -lc

Setting the program’s base address equal to the address at which its
data begins tells the linker not to generate a jump instruction at the
base address. rom.r is the startup module, which could have been
obtained by extracting it from c.lib. prog.r contains the main body of
the program, including its main function.

3.2.3 Options for Overlay Usage

The -R option causes the linker to generate a file containing the
symbol table. It's used when linking a program which calls overlays.

-In.14 -

Aztec CG65 LINKER

The name of the symbol table file is derived from that of the
executable file by changing the extension to .rsm. The file is placed in
the same directory as the executable file.

The linker reserves space in a program between its uninitialized
data area and its heap, into which the program’s overlays will be
loaded. The amount of space equals the sum of the values that you
define using the +C and +D options. For example,

In65 +c¢ 3000 +d 1000 prog.o -I¢

will reserve 0x4000 bytes for overlays. See the Overlay section of the
Technical Information chapter for more details.

3.2.4 65xx options
The +H Option

The +H option defines a "hole"; that is, an area of memory into
which the linker should not place a program’s code or data. You can
create at most four holes in a program using +H options.

The option has the following form:
+h startend

where start and end are the addresses, in hex, of the hole’s starting and
ending addresses.

For example, suppose you want to create a program, line, that
begins at address 0x800, and that the program is going to access a
graphics area that resides between addresses 0x2000-0x4000. The
following command will link the program:

In65 +h 2000,4000 line.o -Ic

The linker will place as much of the program’s code and data as
possible in the area between 0x800-0x2000, and place any additional
code and data in the area above 0x4000.

The linker creates a program’s code segment by concatenating
module code segments, until and unless a module’s code overlaps a
reserved area. If this occurs, the linker moves the module’s entire
code segment above the reserved area, in the first non-reserved area in
which it will entirely fit, and then continues the concatenation of
module code segments.

The linker creates a program’s initialized data segment in the same
way: it concatenates module initialized data segments as much as
possible, without overlapping a reserved area and without breaking a
module’s initialized data segment into discontiguous pieces.

Because the linker won’t break up a module’s code segment or data
segment, it’s likely that some space below a hole will be left unused by
the linker.

- In.15 -

LINKER Aztec CG65

-In.16 -

UTILITY PROGRAMS

- util.1 -

UTILITIES Aztec CG65

Chapter Contents

ULLILY PrOBIAIMSooveeeeeeiecicieee eveereseeeseeecteesssesssessssssssssssssessssssesesssssssans util
AFCYV cieeeecirieiriieees seesstseeessstassastessssnsesossessserssseassnnssssssnnasssssorsssasnsrassenasnsenssse 4
CIUMIOSooevineieeerecerereererasssrossss sesvsssvsssssrosesserseens ssessesssonsesssassrnesassnsssnssasssass 5
CIC creiceeceeeseeesesssrissessasessesssesssessesssessesssnssesstsasssssesstenstessssrasssssensssansenasssssesensen 9
A et ettt sae et e e senesess e st st s Renseebsss s s nneraeanetns 10
REXOS et ettt sr et sae s et es st esees s s sesb s besaerasestsabesreshasasenases 11
IDOS ..overreeeereeisrntriseste e ereseeressiss chssverrsrissrostebssrersessrnensessrsessesssnsssseraessesneseons 14
INAKE .eoeierirrtictiris certeeerresaeresastosessesassessssessesessssnasessarsssassnssesasssssnsassassesnsens 25
INKATCV .ovivrirececrereerneirieeseiens et sssvnsesessesnsonsessesssnsessssaesasessessssasssssesssnsases 4
ODAOBS ..ot rciereetenreeneree sesressesss b besesssssssserssrasseraesar e aeasenbraesaebasnate 43
OPLINOS ot eneerenrere s sretercseeresn e s sssessesesassasssssssssassssssssnssssnsasossossossnes 44
OFAOS ot e cieinrrerstetessesessssessasessosssresborassersessstessarsssssnssnessansssasssrans 45
SQZOS oo ceeeerertrreesseesnes sestestisesssnssresesaea b shesrte st et anbenneshres e Eeraeraes 46

- util.2 -

Aztec CG6S UTILITIES

Utility Programs

This chapter describes utility programs that are provided with
Aztec CG6S.

- util.3 -

ARCYV Program commands ARCY

NAME
arcv & mkarcv - source dearchiver & archiver
SYNOPSIS

arcv arcfile [destpfix]
mkarcy arcfile

DESCRIPTION
arcv extracts the source from the archive arcfile, which has been
previously created by mkarev.

destpfix defines the directory in which the generated files are
placed: if it is not specificd, the generated files are placed in the
current directory. If it is specified, it is prepended to the name of the
file that arcv would otherwise use.

mkarcv creates the archive file arcfile, placing in it the files whose
names it reads from its standard input. Only one file name is read
from a standard input line.

EXAMPLES

For example, the filc header.arc contains the source for all the
header files. To create these header files in the current directory,
enter:

arcv header.arc

The following command creates the archive miyarc.arc containing
the files in.c, out.c, and hello.c.

mkarcv myarc.arc <myarc.bld

The names of the following three files are contained in the file
myarc.bld:

in.c

out.c

hello.c

- util.4 -

CNM65 Aztec Utility Program CNMG6S

NAME

cnmé65 - display object file info
SYNOPSIS

cnmé5 [-sol] file [file ...]
DESCRIPTION

cnm65 displays the size and symbols of its object file arguments.
The files can be object modules created by the Manx assembler,
libraries of object modules created by the /b librarian, and, when
applicable, ’rsm’ files created by the Manx linker during the linking of
an overlay root.

For example, the following displays the size and symbols for the
object module subl.o and the library c.lib:

cnmé6S5 subl.o clib

By default, the information is sent to the console. It can be
redirected to a file or device in the normal way. For example, the
following commands send information about subl.o to the display and
to the file dispfile:

cnmé5 subl.o
cnmé65 subl.o > dispfile

The first line listed by cnm65 for an object module has the
following format:

file (module); code: c¢ data: dd udata: uu total: tt (Oxhh)
where

* file is the name of the file containing the module,

* module is the name of the module; if the module is unnamed,
this field and its surrounding parentheses aren’t printed;

* ¢c¢ is the number of bytes in the module’s code segment, in
decimal;

* dd is the number of bytes in the module’s initialized data
segment, in decimal;

* yu is the number of bytes in the module’s uninitialized data
segment, in decimal;

* 1t is the total number of bytes in the module’s three segments,
in decimal;

* hh is the total number of bytes in the module’s three
segments, in hexadecimal.

If cnmé65 displays information about more than one module, it
displays four totals just before it finishes, listing the sum of the sizes
of the modules’ code segments, initialized data segments, and
uninitialized data segments, and the sum of the sizes of all segments of
all modules. Each sum is in decimal; the total of all segments is also

- util.5 -

CNM65 Aztec Utility Program CNM65

given in hexadecimal,

The -s option tells cnm63- to display just the sizes of the object
modules. If this option isn’t specified, cnmé65 also displays information
about each named symbol in the object modules.

When cnm65 displays information about the modules’ named
symbols, the -/ option tells cnmé65 to display each symbol’s information
on a separate line and to display all of the characters in a symbol’s
name; if this option isn’t used, cnm65 displays the information about
several symbols on a line and only displays the first eight characters of
a symbol’s name.

The -0 option tells cnm6b65 to prefix each line generated for an
object module with the name of the file containing the module and the
module name in parentheses (if the module is named). If this option
isn’t specified, this information is listed just once for each module:
prefixed to the first line generated for the module.

The -0 option is useful when using cnm65 in combination with
grep. For example, the following commands will display all
information about the module perror in the library c.lib:

cnmé635 -0 c.lib >tmp
grep perror tmp

cnm65 displays information about an module’s 'named’ symbols;
that is, about the symbols that begin with something other than a dollar
sign followed by a digit. For example, the symbol guad is named, so
information about it would be displayed; the symbol 30123 is
unnamed, so information about it would not be displayed.

For each named symbol in a module, cnm65 displays its name, a
two-character code specifying its type, and an associated value. The
value displayed depends on the type of the symbol.

If the first character of a symbol’s type code is lower case, the
symbol can only be accessed by the module; that is, it’s local to the
module. If this character is upper case, the symbol is global to the
module: either the module has defined the symbol and is allowing
other modules to access it or the module needs to access the symbol,
which must be defined as a global or public symbol in another module.
The type codes are:

ab The symbol was defined using the assembler’s EQU
directive. The value listed is the equated value of its
symbol.

The compiler doesn’t generate symbols of this type.

rg The symbol is in the code segment. The value is the
offset of the symbol within the code segment.

- util.6 -

CNM65

at

oy

un

bs

Aztec Utility Program CNM65

The compiler generates this type symbol for function
names. Static functions are local to the function, and
so have type pg; all other functions are global, that is,
callable from other programs, and hence have type Pg.

The symbol is in the initialized data segment. The
value is the offset of the symbol from the start of the
data segment.

The compiler generates symbols of this type for
initialized variables which are declared outside any
function. Static variables are local to the program and
so have type dr, all other variables are global, that is,
accessable from other programs, and hence have type
Dt.

When an overlay is being linked and that overlay itself
calls another overlay, this type of symbol can appear
in the rsm file for the overlay that is being linked. It
indicates that the symbol is defined in the program
that is going to call the overlay that is being linked.

The value is the offset of the symbol from the
beginning of the physical segment that contains it.

The symbol is used but not defined within the
program. The value has no meaning.

In assembly language terms, a type of Un (the U is
capitalized) indicates that the symbol is the operand of
a public directive and that it is perhaps referenced in
thc operand ficld of some statements, but that the
program didn’t create the symbol in a statement’s label
field.

The compiler generates Un symbols for functions that
are called but not defined within the program, for
variables that are declared to be extern and that are
actually used within the program, and for
uninitialized, global dimensionless arrays. Variables
which are declared to be extern but which are not used
within the program aren’t mentioned in the assembly
language source file generated by the compiler and
hence don’t appear in the object file.

The symbol is in the uninitalized data segment. The
value is the space reserved for the symbol

The compiler generates bs symbols for static,
uninitialized variables which are declared outside all
functions and which aren’t dimensionless arrays.

- util.7 -

CNM65

Gl

Aztec Utility Program CNM6é65

The assembler generates bs symbols for symbols
defined using the bss assembler directive.

The symbol is in the uninitialized data segment. The
value is the space reserved for the symbol.

The compiler generates G! symbols for non-static,
uninitialized variables which are declared outside all
functions and which aren’t dimensionless arrays.

The assembler generates G/ symbols for variables
declared using the global directive which have a non-
Zero size.

- util.8 -

CRC CRC generator CRC

NAME
crc - Utility for generating the CRC for files
SYNOPSIS
crc filel file2 ...
DESCRIPTION
crc computes a number, called the CRC, for the specified files.

The CRC for a file is entirely dependent on the file’s contents, and
it is very unlikely that two files whose contents are different will have
the same CRCs. Thus, crc can be used to determine whether a file has
the expected contents.

As an example of the usage of crc, the following command
computes the crc of all files whose extension is .c.

crc *¢

- util.9 -

HD Hex dump utility HD

NAME

hd - hex dump utility
SYNOPSIS

hd [+n].]] filel [+n][.]] file 2 ...
DESCRIPTION

hd displays the contents of one or more files in hex and ascii to its
standard output

filel, file2, ... are the names of the files to be displayed.

+n specifies the offset into the file where the display is to start, and
defaults to the beginning of the file. If +n is followed by a period, n is
assumed to be a decimal number; otherwise, it’s assumed to be
hexadecimal. Each file will be displayed beginning at the last specified
offset.

EXAMPLES

The following command displays the contents of files oldtest and
newtest, beginning at offset Ox16b, and of the file named junk,
beginning at its first byte:

hd +16b oldtest newtest +0 junk

The next command displays the contents of tstfil, beginning at byte
1000:

hd -r +1000. tstfil

- util.10 -

HEX65 Intel Hex Generator HEX6S

NAME

hex65 - Intel hex generator
SYNOPSIS

hex65 [-options] progfile
DESCRIPTION

‘hex65 translates a program that was generated by the Aztec CG65
linker, into Intel hex records. The program can then be burned into
ROM by feeding the hex records into a ROM programmer. The
records are written to one or more files, each of which contains the
hex records for one ROM chip.

The ROM chips that are generated from the hex65 output files will
contain the program’s code, followed by a copy of its initialized data.

Note: when a ROM system is started, its RAM contains random values;
the Aztec CG65 startup routine sets up its initialized data area, using
the copy that’s in ROM.

Optionally, the last ROM chip will occupy the top section of the 65xx
memory space, and contain in the top 6 bytes, pointers to the
program’s power-up/reset routine, the nmi interrupt handler, and the
irq interrupt handler.

hex65 assumes that the size of each ROM chip is 2 kb. You can
explicitly define the size of each ROM using hex65’s -P option.

The input files

When you tcll the linker to create the memory image of a program
that’s to be burnced into ROM, you must specify the -T option, to make
the linker also create a file containing the program’s symbol table.
That’s because when /ex65 translates the memory image of a program
into hex records, it reads both of these files.

The names of the files that are read by hex65 must obey the
linker’s conventions: the memory image file should not have an
extension, and the name of the symbol table file should be the same as
that of the memory image file, with extension .sym.

The only file name you specify when you start hex65 is that of the
memory image file; hex65 derives the name of the symbol table file by
appending .sym to it.

The output files

hex65 derives the name of each output file from that of the file
that contains the memory image, by appending an extension of the
form .xnn, where nn is a number. For example, if the name of the
memory image file is prog, then the name of the output files generated
by hex65 are prog.x00, prog.x0l, and so on, where the .x00 file

- util.11 -

HEX65 Intel Hex Generator HEX65

contains the hex records for the lowest-addressed ROM, .x07 the hex
records for the next ROM, etc. When hex65 generates hex records that
will initialize the 65xx power-up and interrupt vector fields, it will
create a separate file, if necessary, that contains just these Intel hex
records. The extension of this separate file indicates the position of its
ROM in the memory space.

For example, supposc that hex65 is creating hex records for a
program whose code and copy of initialized data will reside in two 2-
kb ROMs that begin at 0xc000, and that it is also generating the hex
records that will initialize the power-up and interrupt vectors. Then
hex65 will create the following files, of which the first two contain the
records for the code and copy of initialized data and the third the
records for the vectors:

prog.x00 Contains the hex records for the ROM chip that
occupies 0xe000-0xe7ff;

prog.x01 Contains the hex records for the ROM that occupies
0xe800-0xefff;,

prog.x03 Contains the hex records for the ROM that occupies
0xf800-0xfTfT.

The position of each file’s corresponding ROM in the memory
space is indicated by the number in its file’s extension:

* The number in the first file’s extension is 00, so its ROM
occupies the 2-kb block that begins at 0xe000+0*0x400. Note:
nothing in the names of these files indicates the memory
location of these ROMs, but you know that the first one
begins at the starting address of the program’s code segment;
that 1s, at 0xec000.

* The number in the second file’s extension is 01, so its ROM
occupies the 2-kb block that begins at 0xe000+1*0x400.

* The number in the third file’s extension is 03, so its ROM
occupies the 2-kb block that begins at 0xe000+2*0x400.

The options
hex635 supports the following options:

-Pnn Each ROM is nn bytes long, where nn is a decimal
number. If this option isn’t specified, each ROM is
assumed to be 2 kb long.

-Z Don’t generate hex records for the power-up and
interrupt vectors. If this option isn’t specified, these
vectors are generated.

-Bnnnn The program’s base address is Oxnnnn (this is the
address that was specified as the base address when the
program was linked, using either the -B option or the

- util.12 -

HEX65

Intel Hex Generator HEX65

dclault value). If this option isn’t specified, it’s
assumed to be the lesser of the beginning addresses of
the program’s code or initialized data segments.

Qutput spaces between the fields of each hex record,
to make the records more readable,

Output hex digits using lower case characters.
List the options.

- util.13 -

LB65 Object file librarian LB6S

NAME

1b65 - object file librarian
SYNOPSIS

Ib6S library [options| [modl mod2 ...]
DESCRIPTION

Ib65 is a program that crcates and manipulates libraries of object
modules. The modules must be created by the Manx assembler,

This description of /b65 is divided into three sections: the first
describes briefly /b65°s arguments and options, the second /b65’s basic
features, and the third the rest of 665°s features.

1. The arguments to /b65
1.1 The library argument

When started, [b65 acts upon a single library file. The first
argument to /b65 (library, in the synopsis) is the name of this file. The
filename extension for library is optional; if not specified, it’s assumed
to be .lib.

1.2 The options argument

There are two types of options argument: function code options, and
qualifier options. These options will be summarized in the following
paragraphs, and then described in detail below.

1.2.1 Function code options

When /665 is started, it performs one function on the specified
library, as defined by the options argument The functions that [b65
can perform, and their corresponding option codes, are:

function code
create a library (no code)
add modules to a library -3, -1, -b
list library modules -t
move modules within a library -m
replace modules -r
delete modulcs -d
extract modulcs -X
ensure module uniqueness -u
define module extension -e
help -h

In the synopsis, the options argument is surrounded by square
brackets. This indicates that the argument is optional; if a code isn’t
specified, /b65 assumes that a library is to be created.

- util.14 -

LB65 Object file librarian LB65S

1.2.2 Qualifier options

In addition to a function code, the opfions argument can optionally
specify a qualifier, that modifies /b65°s behavior as it is performing the
requested function. The qualifiers and their codes are:

verbose -V
silent -5

The qualifier can be included in the same argument as the function
code, or as a scparate argument. For example, to cause /665 to append
modules to a library, and be silent when doing it, any of the following
option arguments could be specified:

-as
-5a
-a -S
-§ -a

1.3 The mod arguments

The arguments modl, mod2, etc. are the names of the object
modules, or the files containing these modules, that /565 is to use. For
some functions, /h65 requires an object module name, and for others it
requires the name of a file containing an object module. In the latter
case, the file’s extension is optional; if not specified, the /b65 that’s
supplied with native Aztec C systems assumes that it’s .o, and the b65
that’s supplicd with cross development versions of Aztec C assumes
that the extension is .r. You can explicitly define the default module
extension using the -e option.

1.4 Reading arguments from another file

b65 has a special argument, -f filename, that causes it to read
command line arguments from the specified file. When done, it
continues reading arguments from the command line. Arguments can
be read from more than one file, but the file specified in a -f filename
argument can’t itself contain a -f filename argument.
2. Basic features of /b65

In this section we want to describe the basic features of /b65. With
this knowledge in hand, you can start using /665, and then read about
the rest of the features of /A65 at your leisure.

The basic things you need to know about /65, and which thus are
described in this section, are:

* How to create a library
* How to list the names of modules in a library
* How modules get their names

- util. 15 -

LB65 Object file librarian LB65

* Order of modules in a library
* QGetting /b65 arguments from a file

Thus, with the information presented in this section you can create
libraries and get a list of the modules in libraries. The third section of
this description shows you how to modify selected modules within a
library.

2.1 Creating a Library

A library is created by starting /b65 with a command line that
specifies the name of the library file to be created and the names of
the files whose object modules are to be copied into the library. It
doesn’t contain a function code, and it’s this absence of a functlon
code that tells /565 that it is to create a library.

For example, the following command creates the library exmpllib,
copying into it the object modules that are in the files objl.o and
obj.o:

Ib65 exmpl.lib objl.o obj.0

Making use of /b65’s assumptions about file names for which no
extension is specified, the following command is equivalent to the
above command:

1b65 exmpl objl obj2

An object module file from which modules are read into a new
library can itself be a library created by /b65. In this case, all the
modules in the input library are copied into the new library.

2.1.1 The temporary library

When /b65 creates a library or modifies an existing library, it first
creates a new library with a temporary name. If the function was
successfully performed, [b65 erases the file having the same name as
the specified library, and then renames the new library, giving it the
name of the specified library. Thus, [b65 makes sure it can create a
library before erasing an existing one.

Note that there must be room on the disk for both the old library
and the new.

2.2 Getting the table of contents for a library

To list the names of the modules in a library, use [b65’s -¢ option.
For example, the following command lists the modules that are in
exmpl.lib:

Ib65 exmpl -t

The list will include some **DIR** entries. These identify blocks
within the library that contain control information. They are created
and deleted automatically as necded, and cannot be changed by you

- util.16 -

LB65 Object file librarian LBé6S

2.3 How modules get their names

When a module is copied into a library from a file containing a
single object module (that is, from an object module generated by the
Manx assembler), the name of the module within the library is derived
from the name of the input file by deleting the input file’s volume,
path, and extension components.

For example, in the example given above, the names of the object
modules in exmpl.lib are objl and obj2,

An input file can itself be a library. In this case, a module’s name
in the new library is the same as its name in the input library.

2.4 Order in a library

The order of modules in a library is important, since the linker
makes only a single pass through a library when it is searching for
modules. For a discussion of this, see the tutorial section of the
Linker chapter.

When [b65 creates a library, it places modules in the library in the
order in which it reads them. Thus, in the example given above, the
modules will be in the library in the following order:

objl obj2

As another example, supposc that the library oldlib.lib contains the
following modules, in the order specified:

subl sub2 sub3

If the library newlib.lib is created with the command
1b65 newlib modl oldlib.lib mod2 mod3

the contents of the newly-created newlib.lib will be:
modl subl sub2 sub3 mod2 mod3

The ord utility program can be used to create a library whose
modules are optimally sorted. For information, see its description later
in this chapter.

2.5 Getting [b65 arguments from a file

For libraries containing many modules, it is frequently
inconvenient, if not impossible, to enter all the arguments to /665 on a
single command line. In this case, [b65’s -f filename feature can be of
use: when (65 finds this option, it opens the specified file and starts
reading command arguments from it. After finishing the file, it
continues to scan the command line.

For example, suppose the file build contains the line
exmpl objl obj2

- util.17 -

LB65S Object file librarian LB65S

Then entering the command
1b65 -f build

causes /65 to get its arguments from the file build, which causes /b65
to create the library exmpl.lib containing obj! and 0bj2.

Arguments in a -f file can be separated by any sequence of
whitespace characters (whitespace’ being blanks, tabs, and newlines).
Thus, arguments in a -f file can be on separate lines, if desired.

The 165 command line can contain multiple -/ arguments, allowing
Ib65 arguments to be read from several files. For example, if some of
the object modules that are to be placed in exmpllib are defined in
arith.inc, input.inc, and output.inc, then the following command could be
used to createc exmpl.lib:

1b65 exmpl! -f arith.inc -f input.inc -f output.inc
A -f file can contain any valid /b65 argument, except for another -f,
That is, -f files can’t be nested
3. Advanced b65 features

In this section we describe the rest of the functions that /65 can
perform. These primarily involve manipulating selected modules
within a library.

3.1 Adding modules to a library

Ib65 allows you to add modules to an existing library. The modules
can be added before or after a specified module in the library or can
be added to the beginning or end of the library.

The options that select /665°s add function are:

option Sfunction
-b target add modules before the module target
-1 target same as -b larget
-a target add modules after the module target
-b+ add modules to the beginning of the library
-1+ same as -b+
-a+ add modules to the end of the library

In an /b65 command that selects the add function, the names of the
files containing modules to be added follows the add option code (and
the target module name, when appropriate). A file can contain a single
module or a library of modules.

Modules are added in the order that they are specified. If a library
is to be added, its modules are added in the order they occur in the
input library.

- util.18 -

LB65 Object file librarian LB65

3.1.1 Adding modules before an existing module

As an example of the addition of modules before a selected module,
suppose that the library exmpllib contains the modules

objl obj2 obj3
The command
1b65 exmpl -1 obj2 modl mod2

adds the modules in the files modl.o and mod2.0 to exmpllib, placing
them before the module 0bj2. The resultant exmpl.lib looking like this:

objl modl mod2 obj2 obj3

Note that in the /565 command we didn’t need to specify the
extension of either the file containing the library to which modules
were to be added or the extension of the files containing the modules
to be added. /b65 assumed that the extension of the file containing the
target library was ./ib, and that the extension of the other files was .0.

As an example of the addition of one library to another, suppose
that the library myiib.lib contains the modules

modl mod2 mod3

and that the library exmpl.lib contains
objl obj2 obj3

Then the command
1b65 -b obj2 mylib.lib

adds the modules in myliblib to exmpllib, resulting in exmpllib
containing

obj! modl mod2 mod3 obj2 ob;3

Note that in this example, we had to specify the extension of the
input file mylib.lib. If we hadn’t included it, /b65 would have assumed
that the file was named mylib.o.

3.1.2 Adding modules after an existing module

As an example of adding modules after a specified module, the
command

1b65 exmpl -a objl modl mod2

will insert mwdl! and mod2 after objl in the library exmpllib. 1If
exmpl.lib originally contained

objl obj2 obj3
then after the addition, it contains

- util.19 -

LB65 Object file librarian LBé65

objil modl mod2 obj2 obj3
3.1.3 Adding modules at the beginning or end of a library

The options -b+ and -a+ tell 1b65 to add the modules whose names
follow the option to the beginning or end of a library, respectively.
Unlike the -/ and -a options, these options aren’t followed by the name
of an existing module in the library.

For example, given the library exmpllib containing
objl obj2

the following command will add the modules mod! and mod2 to the
beginning of exmpllib;

1665 exmpl -i+ mod]l mod2
resulting in exmpl.lib containing
modl mod2 objl obj2

The following command will add the same modules to the end of
the library:

1b65 exmpl -a+ modl mod2
resulting in exmpl.lib containing

objl obj2 modl mod2
3.2 Moving modules within a library

Modules which already exist in a library can be easily moved about,
using the move option, -n.

As with the options for adding modules to an existing library, there
are several forms of move functions:

option meaning
-mb target move modules before the module target
-ma target move modules after the module target
-mb+ move modules to the beginning of the library
-ma+ move modules to the end of the library

In the [b65 command, the names of the modules to be moved
follows the move’ option code.

The modules are moved in the order in which they are found in
the original library, not in the order in which they are listed in the
165 command.

3.21 Moving modules before an existing module

As an example of the movement of modules to a position before an
existing module in a library, suppose that the library exmpllib contains

- util.20 -

LB65 Object file librarian LB6S

objl obj2 obj3 obj4 obj5 obj6
The following command moves o0bj3 before obj2:
1b65 exmpl -mb obj2 obj3
putting the modules in the order:
objl obj3 obj2 objd obj5 obj6

And, given the library in the original order again, the following
command moves 0bj6, obj2, and objl before obj3:

Ib65 exmpl -mb obj3 obj6 obj2 objl
putting the library in the order:
objl obj2 obj6 obj3 obj4 objs

As an example of the movement of modules to a position after an
existing module, suppose that the library exmpllib is back in its
original order. Then the command

1b65 exmpl -ma obj4 obj3 obj2
moves obj3 and obj2 after obj4, resulting in the library
objl objd obj2 obj3 objS5 obj6
3.2.2 Moving modules to the beginning or end of a library

The options for moving modules to the beginning or end of a
library are -mib+ and -mua+, respectively.

For exampie, given the library exmpl.lib with contents
objl obj2 obj3 objd obj5 obj6

the following command will move 0bj3 and 0bj5 to the beginning of
the library:

1b635 exmpl -mb+ obj5 obj3
resulting in exmpllib having the order
obj3 obj5 objl obj2 obj4 obj6

And the following command will move 0bj2 to the end of the
library:

1665 exmpl -ma+ obj2
3.3 Deleting Modules

Modules can be deleted from a library using /b65°s -d option. The
command for deletion has the form

1b65 libname -d mod] mod2 ...
where nmwodl, mod2, ... are the names of the modules to be deleted.

- util.21 -

LB65 Object file librarian LB65

For example, suppose that exmpl.lib contains
objl obj2 obj3 obj[d obj5 objo
The following command deletes 0b;3 and obj5 from this library:
1b65 exmpl -d obj3 obj5
3.4 Replacing Modules

The [b65 option ’replace’ is used to replace one module in a library
with one or more other modules.

The ’replace’ option has the form -r target, where target is the name
of the module being replaced. In a command that uses the ’replace’
option, the names of the files whose modules are to replace the target
module follow the ‘replace’ option and its associated target module.
Such a file can contain a single module or a library of modules.

Thus, an /65 command to replace a module has the form:
1b65 library -r target modl mod2 ...

For example, suppose that the library exmpl.lib looks like this:
objl obj2 obj3 objd

Then to replace obj3 with the modules in the files modl.0 and mod2.0,
the following command could be used:

Ib65 exmpl -r obj3 modl mod2
resulting in exmpl.lib containing

objl obj2 modl mod2 oby
3.5 Uniqueness

b65 allows librarics to be crecated containing duplicate modules,
where one module is a duplicate of another if it has the same name.

The option -u causcs /P65 to delete duplicate modules in a library,
resulting in a library in which ecach module name is unique. In
particular, the -u option causes /b65 to scan through a library, looking
at module names. Any modules found that are duplicates of previous
modules are deleted.

For example, suppose that the library exmpllib contains the
following:

objl obj2 obj3 objl obj3
The command
Ib65 exmpl -u

will delete the second copics of the modules ob/! and 0bj2, leaving the
library looking like this:

- util.22 -

LB65 Object file librarian LB65

objl obj2 obj3
3.6 Extracting modules from a Library

The Ib65 option -x extracts modules from a library and puts them
in separate files, without modifying the library.

The names of the modules to be extracted follows the -x option. If
no modules are specified, all modules in the library are extracted.

When a module is extracted, it’s written to a new file; the file has
same name as the module and extension .o.

For example, given the library exmpl.lib containing the modules
objl obj2 obj3
The command
1b65 exmpl -x

extracts all modules from the library, writing objl to objl.o, 0bj2 to
obj2.0, and obj3 to obj3.o.

And the command
Ib65 exmpl -x obj2
extracts just obj2 from the library.
3.7 The ’verbose’ option

The ’verbose’ option, -v, causes /b65 to be verbose; that is, to tell
you what it’s doing.

This option can be specified as part of another option, or all by
itself. For examplc, the following command creates a library in a
chatty manner:

1b65 c¢xmpl -v modl mod2 mod3

And the following cquivalent commands cause /565 to remove some
modules and to be verbose:

1b65 exmpl -dv mod] mod2
1b65 exmp! -d -v modi mod2

3.8 The ’silence’ option
The ’silence’ option, -5, tells /665 not to display its signon message.

This option is especially useful when redirecting the output of a list
command to a disk file, as described below.

3.9 Rebuilding a library

The following commands provide a convenient way to rebuild a
library:

- util.23 -

LBé65S Object file librarian LB65

1b65 exmpl -st > tfil
1b65 exmpl -f tfil

The first command writes the names of the modules in exmpllib to
the file ¢fil The second command then rebuilds the library, using as
arguments the listing generated by the first command.

The -s option to the first command prevents /b65 from sending
information to tfil that would foul up the second command. The
names sent to tfil include entries for the directory blocks, **DJ/R**, but
these are ignored by /b65.

3.10 Defining the default module extension.

Specification of the extension of an object module file is optional;
the [b65 that comes with native development versions of Aztec C
assumes that the extension is .o, and the /565 that comes with cross
development versions of Aztec C assumes that it's .~ You can
explicitly define the default extension using the -e option. This option
has the form

- .ext

For example, thc following command creates a library; the
extension of the input object module files is .i.

Ib65 my.lib -e .i mod]l mod2 mod3
3.11 Help

The -k option is provided for bricf lapses of memory, and will
generate a summary of /h65 functions and options.

- util.24 -

MAKE Program maintenance utility MAKE

NAME

make - Program maintenance utility
SYNOPSIS

make [-n] [-f makefile] {-a] [namel name2 ...]
DESCRIPTION

make 1s a program, similar to the UNIX program of the same name,
whose primary function is to create, and keep up-to-date, files that are
created from other files, such as programs, libraries, and archives.

When told to make a file, make first ensures that the files from
which the target file is created are up-to-date or current, recreating
just the ones that aren’t. Then, if the target file is not current, make
creates it.

Inter-file dependencies and the commands which must be executed
to create files are specified in a file called the 'makefile’, which you
must write.

make has a rule-processing capability, which allows it to infer,
without being explicitly told, the files on which a file depends and the
commands which must be executed to create a file. Some rules are
built into make; you can define others within the makefile.

A rule tells make something like this:

"a targct {ile having extension *.x’ depends on the file
having thc samc basic name and extension '.y’. To
create such a target file, apply the commands ...".

Rules simplify the task of writing a makefile: a file’s dependency
information and command scquences need be explicitly specified in a
makefile only if this information can’t be inferred by the application
of a rule.

make has a macro capability. A character string can be associated
with a macro name; when the macro name is invoked in the makefile,
it’s replaced by its string,

Preview

The rest of this description of make is divided into the following
sections:

1. The basics
2. Advanced fcatures
3. Examplcs

1. The basics

In this scction we want to present the basic features of make, with
which you’ll be able to start using make. Section 2 describes the other

- util.25 -

MAKE Program maintenance utility MAKE

features of make.

Before you can begin using make, you must know what make does,
how to create a simple makefile that contains dependency entries, how
to take advantage of muake’s rule-processing capability, and, finally,
how to tell make to make a file. Each of these topics is discussed in the
following paragraphs.

1.1 What make does

The main function of make is to make a target file "current”, where
a file is considered "current" if the files on which it depends are
current and if it was modified more recently than its prerequisite files.
To make a file current, make makes the prerequisite files current;
then, if the target file is not current, make executes the commands
associated with the file, which usually recreates the file.

As you can see, make is inherently recursive: making a file current
involves making each of its prerequisite files current; making these
files current involves making each of their prerequisite files current;
and so on.

make is very efficient: it only creates or recreates files that aren’t
current. If a file on which a target file depends is current, make leaves
it alone. If the target file itsclf is current, make will announce the fact
and halt without modifying the target.

It is important to have the time and date set for make to
behave properly, since make uses the ’last modified’ times
that are recorded in files’ directory entries to decide if a
target file is not current.

1.2 The makefile

When make starts, onc of the first things it does is to read a file,
which you must write, called the ’makefile’. This file contains
dependency entries defining inter-file dependencies and the commands
that must be executed to makc a file current It also contains rule
definitions and macro definitions.

In the following paragraphs, we want to just describe dependency
entries. In section 2 we discuss the somewhat more advanced topics of
rule and macro definition.

A dependency entry in a makefile defines one or more target files,
the files on which the targets depend, and the operating system
commands that are to b¢ executed when any of the targets is not
current. The first line of the entry specifies the target files and the
files on which they depend; the line begins with the target file names,
followed by a colon, followed by one or more spaces or tabs, followed
by the names of the prerequisite files. It’s important to place spaces or
tabs after the colon that scparates target and dependent files; on
systems that allow colons in file names, this allows rmake to distinguish

- util.26 -

MAKE Program maintenance utility MAKE

between the two uses of the colon character.

The commands are on the following lines of the dependency
information entry. The first character of a command line must be a
tab; make assumes that the command lines end with the last line not
beginning with a tab.

For example,consider the following dependency entry:

prog.com: prog.o subl.o sub2.0
In -0 prog.com prog.o subl.o sub2.0 -Ic

This entry says that the file prog.com depends on the files prog.o,
subl.o, and sub2.0. It also says that if prog.com is not current, make
should execute the In command. make considers prog.com to be current
if it exists and if it has been modified more recently than prog.o,
subl.o, and sub2.o0.

The above entry describes only the dependence of prog.com on
prog.o, subl.o, and sub2.0. It doesn’t define the files on which the ’.0’
files depend. For that, we need either additional dependency entries in
the makefile or a rule that can be applied to create *.0’ files from ’.¢’
files.

For now, we'll add dependency entries in the makefile for prog.o,
subl.o, and sub2.0, which will define the files on which the object
modules depend and the commands to be executed when an object
module is not current. In section 1.3 we’ll then modify the makefile to
make use of make’s built-in rule for creating a ’.o’ file from a ’.¢’ file.

Suppose that the *.0’ files are created from the C source files prog.c,
subl.c, and sub2.c; that subl.c and sub2.c contain a statement to include
the file defs.h and that prog.c doesn’t contain any #include statements.
Then the following long-winded makefile could be used to explicitly
define all the information needed to make prog.com

prog.com: prog.o subl.o sub2.0

In -0 prog.com prog.o subl.o sub2.0 -lc
prog.o: prog.c

cC prog.c

subl.o: subl.c defs.h
cc subl.c

sub2.0: sub2.c defs.h
cc sub2.c

This makefile contains four dependency entries: for prog.com,
prog.o, subl.o, and sub2.0. Each entry defines the files on which its
target file depends and the commands to be executed when its target
isn't current. The order of the dependency entries in the makefile is
not important.

- util.27 -

MAKE Program maintenance utility MAKE

We can use this makefilc to make any of the four target files
defined in it. If none of the target files exists, then entering

make prog.com

will cause make to compile and assemble all three object modules from
their C source files, and then create prog.com by linking the object
modules together.

Suppose that you create prog.com and then modify subl.c. Then
telling make to make prog.com will cause make to compile and assemble
just subl.c, and then recreate prog.com.

If you then modify defs.h, and then tell make to make prog.com,
make will compile and assemble subl.c and sub2.c, and then recreate
prog.com.

You can tell make to make any file defined as a target in a

dependency entry. Thus, if you want to make sub2.0 current, you could
enter

make sub2.0

A makefile can contain dependency entries for unrelated files. For
example, the following dependency entries can be added to the above
makefile:

hello.exe: hello.o
In hello.o -l¢

hello.o: hello.c
cc hello.c

With these dependency entries, you can tell make to make hello.exe
and hello.o, in addition to prog.com and its object files.

1.3 Rules

You can see that the makefile describing a program built from
many .o files would be huge if it had to explicitly state that each .o file
depends on its .c source file and is made current by compiling its
source file.

This is where rules are useful. When a rule can be applied to a file
that make has been told to make or that is a direct or indirect
prerequisite of it, the rule allows make to infer, without being
explicitly told, the name of a file on which the target file depends
and/or the commands that must be executed to make it current, This
in turn allows makefiles to be very compact, just specifying
information that make can’t infer by the application of a rule.

Some rules are built into make; you can define others in a makefile.
In the rest of this scction, we're going to describe the properties of
rules and how you write makcfiles that make use of make’s built-in
rule for creating a .o filc from a .c file. For more information on rules,

- util.28 -

MAKE Program maintenance utility MAKE

including a complete list of built-in rules and how to define rules in a
makefile, sce section 2.2.

1.3.1 make’s use of rules

A rule specifies a target extension, source extension, and sequence
of commands. Given a file that make wants to make, it searches the
rules known to it for one that meets the following conditions:

* The rule’s target extension is the same as the file’s extension;

* A file exists that has the same basic name as the file make is
working on and that has the rule’s source extension.

If a rule is found that meets these conditions, make applies the first
such rule to the file it’s working on, as follows:

* The file having the source extension is defined to be a
prerequisite of the file with the target extension;

* If the file having the target extension doesn’t have a
command sequence associated with it, the rule’s commands
are defined to be the ones that will make the file current.

One rule built into make, for converting .c files into .o files, says

"a file having extension '.0’ depends on the file
having the same basic name, with extension ’.¢’. To
make current such a .o file, execute the command

CC X.C
where ’x’ is the name of the file"

Another built-in rule exists for converting .asm files into .o files,
using the Manx asscmbler.

1.3.2 An example

The .c to .o rule allows us to abbreviate the long-winded makefile
given in section 1.2 as follows:

prog.com: prog.o subl.o sub2.0
In -0 prog.com prog.o subl.o sub2.0 -lc

subl.o sub2.0: defs.h

In this abbreviated makefile, a dependency entry for prog.o isn’t
needed; using the built-in ’.c to .0’ rule, make infers that the prog.o
depends on prog.c and that the command cc prog.c will make prog.o
current.

The abbreviated makefile says that both subl.o and sub2.0 depend
on defs.h. It doesn’t say that they also depend on subl.c and subl.c,
respectively, or that the compiler must be run to make them current;
make infers this information from the .¢c to .o rule. The only
information given in the dependency entry is that which make couldn’t

- util.29 -

MAKE Program maintenance utility MAKE

infer by itself: that the two object files depend on defs.h.
1.3.3 Interaction of rules and dependency entries

As we showed in the above example, a rule allows you to leave
some dependency information unspecified in a makefile. The prog.o
entry in the long-winded makefile of section 1.2 was not needed, since
its information could be inferred by the .c to .0 rule. And the
dependence of subl.o and sub2.0 on their respective C source files, and
the commands needed to create the object files was also not needed,
since the information could be inferred from the .c to .o rule.

There are occasions when you don’t want a rule to be applied; in
this case, information specified in a dependency entry will override
that which would be inferred from a rule. For example, the following
dependency entry in a makefile

add.o:
c¢c -DFLOAT add.c

will cause add.o to be compiled using the specified command rather
than the command specified by the .c to .0 rule. make still infers the
dependence of add.o on add.c, using the .c to .0 rule, however,

2. Advanced features

In the last section we presented the basic features of rmake, with
which you can start using nuke. In this section, we present the rest of
make’s features.

2.1 Dependent Files

A dependent file can be in a different volume or directory than its
target file, with the following provisos.

If the file name contains a colon (for example, because the file
name defines the volume on which the file is located), the colon must
be followed by characters other than spaces or tabs, so that make can
distinguish between this usc of the colon character and its use as a
separator between the target and dependent files in a dependency line.
This shouldn’t be a problem, since most systems don’t allow file names
to contain spaces or tabs.

All references to a file must use the same name. For example, if a
file is referred to in one place using the name

/root/src/foo.c
then all references to the file must use this exact same name.

On PCDOS and MSDOS, note that the following names may refer
to different files:

- util.30 -

MAKE Program maintenance utility MAKE

a:dir/sub/foo.c
a:/dir/sub/foo.c.

For the first name, the search for foo.c begins with the current
directory on the a- drive; for the second, the search begins with the
root directory on the a: drive.

2.2 Macros

 make has a simple macro capability that allows character strings to
be associated with a macro name and to be represented in the makefile
by the name. In the following paragraphs, we’re first going to describe
how to use macros within a makefile, then how they are defined, and
finally some special features of macros.

2.2.1 Using macros

Within a makefile, a macro is invoked by preceding its name with a
dollar sign; macro names longer than one character must be
parenthesized. For example, the following are valid macro invocations:

$(CFLAGS)
$2
$(X)
$X
The last two invocations are identical.

When make encounters a macro invocation in a dependency line or
command line of a makefile, it replaces it with the character string
associated with the macro. For example, suppose that the macro
OBJECTS is associated with the string a.0 b.o co do. Then the
dependency entries:

prog.exe: prog.o a.0 b.o c.o d.o
In prog.o a.0 b.o c.o d.o

a.0 b.o c.o d.o: defs.h
within a makefile could be abbreviated as:

prog.exe: prog.o $(OBJECTS)
In prog.o $(OBJECTS)

$(OBJECTS): defs.h

There are three special macros: $3, $* and $@. $$ represents the
dollar sign. The other two are discussed below.

2.2.2 Defining macros in a makefile

A macro is defined in a makefile by a line consisting of the macro
name, followed by the character ’=’, followed by the character string to
be associated with the macro.

- util.31 -

MAKE Program maintenance utility MAKE

For example, the macro OBJECTS, used above, could be defined in
the makefile by the line

OBJECTS = 2.0 b.0 c.o do

A makefile can contain any number of macro definition entries. A
macro definition must appear in the makefile before the lines in which
it is used.

2.2.3 Defining macros in a command line

A macro can be defined in the command line that starts make. The
syntax for a command line definition has the following form:

mac=str
where mac is the name of the macro, and str is its value.
str cannot contain spaces or tabs.

For example, the following command assigns the value -DFLOAT to
the macro CFLAGS:

make CFLAGS=-DFLOAT

The assignment of a value to a macro in a command line overrides
an assignment in a makefile statement.

2.2.4 Macros used by built-in rules

make has two macros, CFLAGS and AFLAGS, that are used by the
built-in rules. These macros by default are assigned the null string.
This can be overriden by a macro definition entry in the makefile.

For example, the following would cause CFLAGS to be assigned
the string "-T":

CFLAGS =-T

These macros are discussed below in the description of built-in
rules.

2.2.5 Special macros

Before issuing any command, two special macros are set. $@ is
assigned the full name of the target file to be made, and $* is the name
of the target file, without its extension. Unlike other macros, these can
only be used in command lines, not in dependency lines.

For example, suppose that the files x.c, y.c, and z.c need to be
compiled using the option "-DFLOAT". The following dependency
entry could be used:

X.0 y.0 2.0
cc -DFLOAT $*.c

When make decides that x.o needs to be recreated from x.c, it will
assign $* the string "x", and the command

- util.32 -

MAKE Program maintenance utility MAKE

cc -DFLOAT x.c

will be executed. Similarly, when y.o or z.0 is made, the command cc
-DFLOAT y.c or cc -DFLOAT z.c will be executed.

The special macros can also be used in command lines associated
with rules. In fact, the $@ macro is primarily used by rules. We'll
discuss this more in the description of rules, below.

2.3 Rules

In section 1, we presented the basic features of rules: what they are
and how they are used. We also noted that rules could be defined in
the makefile and that some rules are built into make. In the following

paragraphs, we describe how rules are defined in a makefile and list
the built-in rules.

2.3.1 Rule definition

A rule consists of a source extension, target extension, and
command list. In a makefile, an entry defining a rule consists of a line
defining the two extensions, followed by lines containing the
commands.

The line defining the extensions consists of the source extension,
immediately followed by the target extension, followed by a colon.

All command lines associated with a rule must begin with a tab
character. The first linc following the extension line that doesn’t begin
with a tab terminates thc commands for the rule.

For example, the following rule defines how to create a file having
extension .rel from one having extension .c.

.crek
cc -0 $@ $*c
The first line declares that the rule’s source and target extension are .c
and .rel, respectively.

The second line, which must begin with a tab, is the command to
be executed when a rel file is to be created using the rule.

Note the existence of the special macros $@ and $* in the
command line. Before the command is executed to create a .rel target
file using the rule, thc macro $@ is replaced by the full name of the
target file, and thc macro $* by the name of the target, less its
extension.

Thus, if make decides that the file x.rel needs to be created using
this rule, it will issue the command

cc -0 x.rel x.c

If a rule defined in a makefile has the same source anq target
extensions as a built-in rule, the commands associated with the

- util.33 -

MAKE Program maintenance utility MAKE

makefile version of the rule replace those of the built-in version. For
example, the built-in rule for creating a .o file from a .c file looks like
this:

.C.0:
cc $(CFLAGS) $*¢c

If you want the rule to generate an assembly language listing,
include the following rule in your makefile:

.C.0:
cc $(CFLAGS) -a $*.c
as -ZAP -] $*.asm

2.3.2 Built-in rules

The following rules are built into make. The order of the rules is
important, since make searches the list beginning with the first one,
and applies the first applicable rule that it finds.

.C.0:
cc $(CFLAGS) -0 $@ $*.c

.c.obj:
cc $(CFLAGS) $*.¢c
obj $*.0 $@

.asm.obj.
as $(AFLAGS) $*.asm
obj $*.0 3@

.asm.o:
as $(AFLAGS) -0 $@ $*.asm

The two macros CFLAGS and AFLAGS that are used in the built-
in rules are built into make, having the null character string as their
values. To have make use other options when applying one of the
built-in rules, you can define the macro in the makefile.

For example, if you want the options -T and -DDEBUG to be used
when make applies the .c.o rule, you can include the line

CFLAGS = -T -DDEBUG

in the makefile. Another way to accomplish the same result is to
redefine the .c.o rule in the makefile; this, however, would use more
lines in the makefile than the macro redefinition.

2.4 Commands

In this section we want to discuss the execution of operating system
commands by make.

- util.34 -

MAKE Program maintenance utility MAKE

2.4.1 Allowed commands

A command line in a dependency entry or rule within a makefile
can specify any command that you can enter at the keyboard. This
includes batch commands, commands built into the operating system,
and commands that cause a program to be loaded and executed from a
disk file.

2.4.2 Logging commands and aborting make

Normally, before make executes a command, it writes the command
to its standard output device; and when the command terminates, make
halts if the command’s return code was non-zero. Either or both of
these actions can be suppressed for a command, by preceding the
command in the makefile with a special character:

@ Tells make not to log the command;
- Tells make to ignore the command’s return code.

For example, consider the following dependency entry in a
makefile:

prog.exe: a.0 b.o c.o d.o
In -0 prog.exe 2.0 b.o c.o d.o -l¢
@c¢cho all done

When the echo command is executed, the command itself won’t be
logged to the console.

2.4.3 Long command lines

Makefile commands that start a Manx program, such as cc, as, or In,
or that start a program crcated with cc, as, In, and c.lib, can specify a
command line containing up to 2048 characters.

For example, if a program depends on fifty modules, you could
associate them with the macro OBJECTS in the makefile, and also
include the dependency entry

prog.exe: $(OBJECTS)
In -0 prog.exc $(OBJECTS) -lc

This will result in a very long command line being passed to /n.

In the ncxt section we will describe how OBJECTS could be
defined.

For the execution of other commands, the command line can
contain at most 127 characters.

2.5 Makefile syntax

We've already prescnted most of the syntax of a makefile; that is,
how to define rules, macros, and dependencies. In this section we want
to present two features of the makefile syntax not presented elsewhere:

- util.35 -

MAKE Program maintenance utility MAKE

comments and line continuation.
2.5.1 Comments

make assumes that any line in a makefile whose first character is
#’ is a comment, and ignores it. For example:

#

the following rule generates an 8080 object module
from a C source file:
#

.c.080:
cc80 -0 cc.tmp $*.c
as80 -ZAP -0 $*.080 cc.tmp

2.5.2 Line continuation

Many of the items in a makefile must be on a single line: a macro
definition, the file dependency information in a dependency entry,
and a command that make is to execute must each be on a single line.

You can tell make that several makefile lines should be considered
to be a single line by terminating each of the lines, except the last,
with the backslash character, ’\’. When muake sees this, it replaces the
current line’s backslash and newline, and the next line’s leading blanks
and tabs by a single blank, thus effectively joining the lines together.

The maximum length of a makefile line after joining continued
lines is 2048 characters.

For example, the following macro definition equates OBJ to a string
consisting of all the specified object module names.

OBIJ = printf.o fprintf.o format.o\
scanf.o fscanf.o scan.o\
getchar.o getc.o

As another example, the following dependency entry defines the

dependence of driver.lib on several object modules, and specifies the
command for making driver.lib:

driver.lib: driver.o printer.o \
ino \
out.o
Ib driver.lib driver.o\
printer.o \
in.o out.o

This second example could have been more cleanly expressed using
a macro:

- util.36 -

MAKE Program maintenance utility MAKE

DRIVOBJ= driver.o printer.o\
in.o out.o

driver.lib: $(DRIVOBJ)
Ib driver.lib $(DRIVOBJ)

This was done to show that dependency lines and command lines can
be continued, too.

2.6 Starting make

You've already seen how make is told to make a single file.
Entering

make filename

makes the file named filename, which must be described by a
dependency entry in the makefile. And entering

make

makes the first file listed as a target file in the first dependency entry
in the makefile.

In both of thesc cases, make assumes the makefile is named
'makefile’ and that it’s in the current directory on the default drive.

In this section wec want to describe the other features available
when starting make.

2.6.1 The command line
The complete syntax of the command line that starts make is:
make [-n] [-f makefilc] {-a] [macro=str] [filel] [file2] ...
Square brackets indicate that the enclosed parameter is optional

The parameters filel, file2 ... are the names of the files to be made.
Each file must be described in a dependency entry in the makefile.
They are made in the order listed on the command line.

The other command line parameters are options, and can be
entered in upper or lower case. Their meanings are:

-n Suppresses command execution. make logs the
commands it would execute to its standard
output device, but doesn’t execute them.

-f makefilc Specifies the name of the makefile

-a Forces make to make all files upon which the
specified target files directly or indirectly
depend, and to make the target files, even those
that it considers current.

MACROs=str :

Creates a macro named MACRO, and assigns str

as its valuc.

- util.37 -

MAKE Program maintenance utility MAKE

2.6.2 make’s standard output

make logs commands and crror messages to its standard output
device. This can be redirected in the standard way. For example, to
make the first target filc in thc first dependency entry and log
messages to the file owt, enter

make >out

The standard input and output devices of programs started by make
are set as they are for make itself, unless one or both of them are
explicitly redirected in the command that starts the program.

27 Executing commands

When make decides that a command needs to be executed, it
executes it immediately, and waits for the command to finish. It
activates a command whose code is contained in a disk file by issuing
an fexec function call It activates DOS built-in commands and batch
commands by calling the system function, which causes a new copy of
the command processor to be loaded. Thus, to use make, your system
must have enough memory for DOS, make, and whatever programs are
loaded by make to be in memory simultaneously.

28 Differences between the Manx and UNIX *make’ programs

The Manx make supports a subset of the features of the UNIX
make. The following comments present features of the UNIX make
that aren’t supported by the Manx make.

* The UNIX make will lct you make a file that isn’t defined as a
target in a makefile depcndcency entry, so long as a rule can be
applied to creatc it. The Manx make doesn’t allow this. For
example, if you want to create the file hello.o from the file hello.c
you could say, on UNIX

make hello.o

even if hello.o wasn’t defined to be a target in a makefile
dependency entry. With the Manx make, you would have to have a
dependency entry in a makefile that defines hello.o as a target.

* The UNIX make supports the following options, which aren’t
supported by the Manx make:

piLksrbemtdq

The Manx make supports the option ’-a’, which isn’t supported by
the UNIX ruake.

* The special names .DEFAULT, .PRECIOUS, .SILENT, and
JGNORE are supported only by the UNIX make.

* Only the UNIX make allows the makefile to be read from make’s
standard input.

- util.38 -

MAKE Program maintenance utility MAKE

* Only the UNIX make supports the special macros $<, $7, and $%,
and allows an upper case D or F to be appended to the special
macros, which thus modifies the meaning of the macro.

* Only the UNIX make requires that the suffixes for additional rules
be defined in a .SUFFIXES statement.

* Only the UNIX make allows macros to be defined on the command
line that activates make.

* Only the UNIX make allows a target to depend on a member of a
library or archive.

3. Examples

3.1 First example

This example shows a makefile for making several programs. Note
the entry for arc. This docsn’t result in the generation of a file called
arc, it's just used so that we can generate arcv and mkarcy by entering
make arc.

- util.39 -

MAKE Program maintenance utility MAKE

#
rules:
#
.c.080:
cc80 -DTINY -0 $@ $*.c
#
macros:
#
OBJ=make.o parse.o scandir.o dumptrec.o rules.o command.o
#

dependency entry for making make:
#

make.com: $(OBJ) cntic.o envcopy.o
In -0 make.com $(OBJ) envcopy.o cntlc.o -Ic
#

dependency entries for making arcv & mkarcv:
#

arc. mkarcv.com arcv.com
@echo done

mkarcv.com: mkarcv.o
In -0 mkarcv.com mkarcv.o -lc
arcv.com : arcv.o
In -0 arcv.com arcv.o -l¢
#
dependency entries for making CP/M-80 versions of arcv & mkarcv:
#
mkarcv80.com: mkarcv.080
In80 -0 mkarcv80.com mkarcv.080 -t -Ic
arcv80.com: arcv.080
In80 -0 arcv80.com arcv.080 -1t -Ic

$(OBJ): libc.h make.h
3.2 Second example

This example uses nmake to make a library, my.lib. Three directories
are involved: the directory libc and two of its subdirectories, sys and
misc. The C and assembly language source files are in the two
subdirectories. There are makefiles in each of the three directories,
and this example makes usc of all of them. With the current directory
being libc, you enter

make my.lib

This starts make, which reads the makefile in the libc directory. make
will change the current directory to sys and then start another make
program.

- util.40 -

MAKE Program maintenance utility MAKE

This second make compiles and assembles all the source files in the
sys directory, using the makefile that’s in the sys directory.

When the ’sys’ nuke finishes, the ’libc’ make regains control, and
then starts yet another make, which compiles and assembles all the
source files in the musc subdircctory, using the makefile that’s in the
misc directory.

When the ’mis¢’ make is done, the ’lib¢’ make regains control and
builds my.lib. You can then remove the object files in the
subdirectories by entering

make clean
3.2.1 The makefile in the ’libc’ directory

my.lib: sys.mk misc.mk
del my.lib
Ib my.lib -f my.bid
@echo my.lib done

sys.mk:
cd sys
make
cd..

misc.mk:
cd misc
make
cd ..

clean:
cd sys
make clean
cd ..
¢d misc
make clean
cd ..

- util.4l -

MAKE Program maintenance utility MAKE

3.2.2 Makefile for the *sys’ directory

REL=asctime.o bdos.o begin.o chmod.o croot.o csread.o ctime.o \
dostime.o dup.o exec.o execl.o execlp.o execv.o execvp.o \
fexec.o fexecl.o fexecv.o ftime.o getcwd.o getenv.o \
isatty.o localtim.o mkdir.o open.o stat.o system.o time.o\
utime.o wait.o diocth.o ttyio.o access.o syserr.o

COPT=
HEADER-=../header

.c.o:
cc $(COPT) -I$S(HEADER) $*.c -0 $@
sqz 3@

as $*.asm -0 $@
sqz $@

all: $(REL)
@echo sys done

clean:
del *o

3.2.3 Makefile for the *misc directory

REL=atoi.o atol.o calloc.o ctype.o format.o malloc.o gsort.o \
sprintf.o sscanf.o fformato fscan.o

COPT=
HEADER-=../hcader

.C.0:
cc $(COPT) -I$(HEADER) $*.c -0 $@
sqz $@

.asm.o:
as $*.asm -0 $@
sqz $@

all: $(REL)
@echo misc done

fformat.o: format.c
cc -IS(HEADER) -DFLOAT format.c -o fformat.o

fscan.o: scan.c
cc -IS(HEADER) -DFLOAT scan.c -0 fscan.o

clean:
del *o

- util.42 -

OBDé6S Aztec Utility Program OBD65

NAME

obd65 - list object code
SYNOPSIS

obd65 <objfile>
DESCRIPTION

obd65 lists the loader items in an object file. It has a single
parameter, which is the name of the object file.

- util.43 -

OPTINT6S Pseudo Code Optimizer OPTINTGS

NAME

optint65 - pscudo-code aptimizer
SYNOPSIS

optint65 [-ZAP] |-o outfile} [-a] |-v] infile
DESCRIPTION

optint65 optimizes the assembly language source that’s generated by
cci. The resulting code can then be assembled by asi.

infile is the name of the file whose assembly language source is to
be optimized.

The -ZAP option tells optint65 to delete the input file when the
optimization is completed.

The -0 outfile tells optint65 to write the optimized code to the file
named outfile. If this option isn’t used, the optimized code is written
to a file whose name is derived from that of the input file, by
changing its extension to .opt.

The -a option tells optint65 not to start asi. If this option isn’t used,
optint65, when done, starts asi, which assembles the optimized code and
writes the resultant object code to a file. The name of this file is
derived from the optimized code file by changing the extension to .i
In this default case, asi, when done, deletes the optimized code file.

The -v option tells opunt65 to display information about the
optimizations that it performs.

- util.44 -

ORDé65 Aztec Utility Program ORD65

NAME

ord65 - sort object module list
SYNOPSIS

ord65 [-v] [infile [outfile]}
DESCRIPTION

ord65 sorts a list of object file names. A library of the object
modules that is generatcd from the sorted list by the Manx object
module librarian will have a minimum number of ’backward
references’; that is, global symbols that are defined in one module and
referenced in a later module.

Since the specification of a library to the linker causes it to search
the library just once, a library having no backward references need be
specified just once when linking a program, and a library having
backward references may need to be specified multiple times.

infile is the name of a file containing an unordered list of file
names. These files contain the object modules that are to be put into a
library. If infile isn’t specified, this list is read from ord65’s standard
input. The file names can be separated by space, tab, or newline
characters.

outfile is the name of the file to which the sorted list is written, If
it’s not specificd, the list is written to ord65’s standard output. outfile
can only be specified il /nfile is also specified.

The -v option causcs ord65 to be verbose, sending messages to its
standard crror device as it procecds.

- util. 45 -

SQZ65 Aztec Utility Program SQZ65

NAME

$qz65 - squeeze an object library
SYNOPSIS

sqz65 file foutfile|
DESCRIPTION

5gz65 compresses an object module that was created by the Manx
assembler.

The first parameter is the name of the file containing the module
to be compressed. The second paramecter, which is optional, is the
name of the file to which the compressed module will be written.

If the output file is specified, the original file isn’t modified or
erased.

If the output file isn’t specified, sgz65 creates the compressed
module in a file having a temporary name, erases the original file, and
renames the output file to the name of the original file. The temporary
name is derived from the input file name by changing it’s extent to
.5qz.

If the output file isn’t specified and an error occurs during the
creation of the compressed module the original file isn’t erased or
modified.

- util.46 -

LIBRARY GENERATION

- libgen.1 -

LIBGEN Aztec CG6S

Chapter Contents

Library genErationce. vovevervuerirrerseremssiescesesressesesesesssnsssesassnssnsnons libgen
1. Rewriting the fUNCHONScccecet oo veeee et et aer e seveesasaens 3
1.1 The Start-up fUNCHON .ccciiieeer ceeeeeecrreniesiereseeererrereanraeseesessasnenens 3

1.2 The __ mMain fUNCHONcccoeveee evrerenrerecncnesrsestsssrsssesnesassssseseseonsens 4

1.3 The Unbuffered i/0 fUNCHONSccoceeeeeicerieeereceeere e saeeesaenenenes 4

1.4 The standard i/o functions *agetc’ and *aputc’co.. cevereeurees 9

1.5 The sbrk heap management fUNCtion cocvuverrveeerncsencserens 9

1.6 The exit and _exit fUNCHONS wcuecvensieneeereinsecsencnsesssssssinns 9

2. Building the LBIari€scceiee ceveeveveseereisecnseeeeseesssesessesesensesessssnns 10

3. FUNCHION dESCIIPLIONS ..eovevvees ceevereerreeresnereseennesesesesessssesessessssssranssanes 11

- libgen.2 -

Aztec CG65 LIBGEN

Library Generation

The Aztec CG65 functions are provided in source form. Before you
can create programs that use them, you will have to create object
module libraries of them, after making any necessary modifications.

In the following discussion, we assume that you have installed
Aztec CG65 in a set of subdirectories, as directed in the Tutorial
chapter. We also assume that your system has a make program
maintenance program that is UNIX compatible; this program, under
direction of "makefiles" provided with Aztec CG65, will control the
compilation and asscmbly of library modules and the generation of the
libraries. For systems whose standard software doesn’t include make,
we will provide the Aztec make with your Aztec CG65 package, if one
is available; otherwise, the release document will describe the
procedure for creating the libraries.

The description of the Aztec make is in the Utility Programs
chapter.
1. Rewriting the functions

Many of the functions provided with this package will run, without
modification, on any 65xx-based system. Some, however, may need to
be rewritten for usc on different systems. We’ve included the source
for the Apple // versions of these functions, which you can modify
for use on your system.

The functions that may nced to be rewritten are:
* The start-up function;
* The __main function;
* The unbuffcred i/0 functions;
* The standard i/0 functions agetc and apultc.
1.1 The start-up function

The start-up function is the first routine to be executed when the
program is startcd. It scts up pointers, moves the copy of the
initialized data segment from ROM to RAM, clears the uninitialized
data segment, and jumps to the program’s main function. The startup
function 15 named .begin; its source is in the file rom.a65, in the
rom.arc archive,

The following paragraphs describe some changes that you might
want to make to rom.a65:

- libgen.3 -

LIBGEN Aztec CG65

* rom.a65 contains a statement that creates a 2kb area for the
program’s pseudo stack in the uninitialized data area. You
can change this statement to, for example, change the size of
this area, or to place pseudo stack outside of the initialized
data area, or ...

* roma65 contains statements that define the boundaries of a
program’s 'heap’; that is, the area of memory from which
buffers are dynamically allocated. By default, this area is 1 kb
long, and immediately follows the space reserved for the
program’s uninitialized data and, if present, its overlays. You
can change these statements to, for example, change the size
of the heap, or to place it in some other section of memory,
or ...

* The 65xx has three fields at the top of memory that contain
pointers to routines that handle power-up/reset, nmi
interrupt, and irq interrupt. hex65 can optionally generate
hex records that initialize the 65xx power-up/reset and
interrupt vectors; when it does so, it sets the address of the
global symbol .begin in the power-up/reset vector, .nmi in the
nmi vector, and .irg in the irq vector. You already know that
.begin is in rom.a65. It also contains the directives that define
.drqg and .nmi; no code, just the definition directives. So if
your program is going to handle these interrupts, you must
either add the code to rom.a65 or remove these directives
from rom.a65 and put them and the interrupt-handling code
in another module.

1.2 The __ruin function

The __main function, whose source is in wmain.c within the rom.arc
archive, acts as an interface between the .begin and main functions. In
the supplied version, __main just calls main, passing null values for
main’s argc and argv paramcters. You may want to modify this
function, to initialize the program’s stdin, stdout, and stderr devices, to
handle i/o0 redirection, to pass command line arguments to main via
the argc and argv parameters, ...

1.3 The Unbuffered i/o functions

There are two classes of UNIX-compatible i/o functions: standard
and unbuffered The unbuffercd i/o functions are system dependent,
and the standard i/o functions call the unbuffered. Aztec CG65
contains the Apple ProDOS versions of these functions; so you must
rewrite those that your functions call, and those that are called by the
standard i/0 functions that your functions call

The unbuffered i/0 functions are:

- libgen.4 -

Aztec CG65 LIBGEN

open creat close read write
Iseek rename unlink ioctl isatty

Descriptions of the unbuffered i/o functions are in the "System
Independent Functions" and "Library Functions Overview" chapters.
The following paragraphs present additional information that may be
of use when writing your own versions of these functions.

1.3.1 File descriptors

Associated with each file or device that is open for unbuffered i/o
is a positive integer called a "file descriptor”". A file descriptor is one
of the parameters that is passed to an unbuffered i/o function; it
defines the file or device on which the i/o is to be performed. There’s
usually a limited number of file descriptors, which of course limits the
number of files and/or devices that can be simultaneously open for
i/o.
1.3.1.1 When there’s lots of files and devices...

If a system supports disk files and/or supports more devices than
file descriptors, the file descriptors must be dynamically allocated.
That is, before i/o with a file or device can begin, a function must be
called that assigns a file descriptor to it; and when the i/o is done
another function must be called to de-assign the file descriptor. In this
case, a table is usually provided that has entries defining the status of
each file descriptor and that is accessible to all the unbuffered i/o
functions. Here’s how the unbuffered i/o functions make use of the
table:

* open and creat prcpare a file or device for unbuffered i/o.
They scan the table for an unused entry, and initialize the
cntry with information about the file or device. For example,
the entry for an open decvice might contain the device’s
address; that for an open file might contain the file’s current
position and access mode. As the file descriptor for the
opened file or device, open and creat return the entry’s index
into the table.

* read, write, Iseek, ioctl, and isatty perform operations on, and
determine thc status of, an open file or device. The file
descriptor of the file or device is one of the parameters passed
to them. They examine the file descriptor’s table entry for
information about the file or device.

“ close completes i/o to the open file or device having a
specificd file descriptor. Most of the operations that close
performs depend on the particular file or device; but it always
marks the descriptor’s table entry as being unused.

* unlink and rename don’t use the file descriptor table at all.

- libgen.5S -

LIBGEN Aztec CG65

1.3.1.2 When only devices are supported...

If programs access just devices (i.e. not files), if there are fewer
devices than file descriptors, and if your programs make limited use of
the standard i/o functions (as defined below), you can simplify the
unbuffered i/o functions by doing away with the file descriptor table,
hard-coding the assignment of devices and file descriptors into the
unbuffered i/o functions, and leaving open, creat, and close as mere
stubs that simply return when called.

For example, you could code into the write function the fact that
file descriptor 5 is associated with a printer at a certain address. Then
to write to the printer, a program could simply issue a call to write,
telling it to write to file descriptor 5. It wouldn’t have to first call open
or subsequently call close.

1.3.1.3 Pre-assigned file descriptors

By convention, file descriptors 0, 1, and 2 are pre-assigned to the
system console, even when all other file descriptors are dynamically
assigned. To perform an unbuffered i/o operation on the console, a
program simply calls the appropriate function, specifying one of these
file descriptors; it need not first call open or subsequently call close.

Some systems allow the opcerator to redirect file descriptors O and 1
to other files and/or dcvices, by specifying special operands on the
command line that starts a program. This is done by inserting a special
function between the startup routine and the user’s main function. If
any redirection operands are found in the command line, this special
function closes the specified file descriptor by calling close and reopens
it to the new file or device by calling open. By convention, the
command line operand to redircect file descriptor O consists of "<"
followed by the file or device name. The command line operand to
redirect file descriptor 1 consists of ">" or ">>" followed by the file or
device name. ">" causes a new file to be created. ">>" causes a file to
be appended to, if it already cxists, or to be created, if it doesn’t exist.

1.3.2 Interaction of the standard i/o and unbuffered i/o functions

The standard i/o functions call the unbuffered i/o functions.
Because of this, the standard i/o operations that a program will
perform places implementation requirements on the unbuffered i/o
functions. This section discusses those requirements, after first
presenting general information on standard i/o file pointers and their
relationship to unbuffered i/o file descriptors.

Before standard i/o can be performed on a file or device, an
unbuffered i/o file descriptor must be assigned to it, and a standard
i/o "file pointer" must be assigned to the file descriptor. The
assignment of a file pointer and file descriptor can be done
dynamically, by calling the standard i/o fopen function. Three file
pointers, named stdin, stdout, and stderr, are pre-assigned to file

- libgen.6 -

Aztec CG65 LIBGEN

descriptors 0, 1, and 2; these file descriptors in turn are pre-assigned to
the console.

When a program calls a standard i/0 function, it often must pass a
file pointer, which identifies the file or device on which i/o is to be
performed. There arc a special set of standard i/o functions for
accessing stdin, stdout, and stderr: for these, the file pointer isn’t
passed, since the functions know what file pointer is being accessed.

1.3.2.1 Supporting the standard i/o fopen and fclose functions

The dynamic assignment of a file pointer and file descriptor to a
file or device is done by the fopen function. This function selects a
file pointer for the file or device and then calls the unbuffered i/o
open function, which selects a file descriptor.

If programs call fopen, you must implement the unbuffered i/o
open function, and open must return the file descriptor that’s associated
with the file or device. This requirement (for a functional open when
fopen is called) must be met even if file descriptors are pre-assigned to
devices; open in this case could be very simple, just searching a table
for a device name and returning the associated file descriptor.

Conversely, the use of the standard i/o functions to access those
devices that don’t first have to be fopened (i.e. stdin, stdout, and
stderr) places no requirements on open. In particular, if file
descriptors are pre-assigned to devices and open simply returns when
called, programs can still call the standard i/o functions to access the
devices associated with the stdin, stdout, and stderr file pointers.

The standard i/o function fclose calls the unbuffered i/o function
close. Thus, if programs call fclose, you must implement a close
function. If assignments of devices to file descriptors is hard-coded,
close can usually just rcturn the value 0, since nothing special (such as
calling the opcrating systecm to close an open file or deallocating a file
descriptor) nceds to be done.

1.3.2.2 Supporting the standard i/o input and output functions

If programs call any of the standard i/o input functions, you must
implement the unbuffcred i/0 read function. And if they call any of
the standard i/o output functions, you must implement the write
function.

1.3.2.3 Supporting the standard i/o fseek function

If programs will call the standard i/o fseek function, you must
implement the unbuffered i/o Iseek function, since fseek calls [seek.

1.3.2.4 Standard i/o and the isaity function

If programs call any standard i/o functions, you must implement
the unbuffered i/o0 function isarty. The standard i/o functions call this
function to decide whether their i/o to a file or device should be

- libgen.7 -

LIBGEN Aztec CG65

buffered or unbuffered.

This use of the word "unbuffered" in describing standard i/o might
be a little confusing, since the use of the expression "unbuffered i/o
functions" to describe onc sct of i/0 functions implies that the other
set, the "standard i/0 functions", are buffered. Nevertheless, a standard
i/o stream can be either buffered or unbuffered: if buffered, data
that's exchanged between user-written functions and the unbuffered
1/0 functions passes through a buffer; if unbuffered, data doesn’t pass
through a buffer.

For a given file descriptor, isatty should return non-zero if standard
i/o to the device associated with the file descriptor is to be buffered,
and zero if it is to be unbuffered.

For example, isatty should probably return non-zero for a file
descriptor that’s associated with the system console and zero for file
descriptors associated with files; it could return either zero or non-zero
for other devices, such as printers, depending on your system’s
requirements.

1.3.3 Error codes

We’ve presented most of the factors you should consider when
writing your unbuffcred i/o functions. In this section we want to list
error codes that the functions could return in the global int ermo.

open error codes:

ENOENT File does not exist and O__CREAT wasn’t specified.
EEXIST File cxists, and O__CREAT+0O__ EXCL was specified.
EMFILE Invalid file descriptor passed to open.

close error codes:

EBADF Bad file descriptor passed to close.
creat error codes:

EMFILE All file descriptors are in use.
Iseek error codes:

EBADF Invalid file descriptor
EINVAL Offset paramcter is invalid, or the requested position
is before the beginning of the file.

read error codes:
EBADF Invalid file descriptor
write error codes:

EBADF Invalid filc descriptor
EINVAL Invalid opcration; i.e. writing not allowed.

- libgen.8 -

Aztec CG65 LIBGEN

1.4 The standard i/o functions ’agetc’ and ’aputc

The characters used to terminate lines of text differ form system to
system. On UNIX, it’s the newline (linefeed) character, *\n’. On the
Apple //, it's carriage return, '\r’. On CPM, it’s carriage return-line
feed. In order to allow programs to access files of text in a system-
independent manner, the standard i/o functions ageic and aputc are
provided: ageic reads a character from the standard input channel,
translating the line termination sequence into ’\n’. aputc writes a
character to the standard output channel, translating ’\n’ to the line
termination sequence.

The following standard i/0 functions call agetc and aputc.

scanf fscanf printf fprintf
getchar gets fgets
putchar puts fputs

Hence, if you intend to write programs that access text and the line
termination sequence on your system differs from that on the Apple
// (that is, it isn’t carriage return), you'll have to modify ageic and
apulc.

The source for these functions are in the files agetc.c and aputc.c,
within the stdio.arc archive. If you followed our recommendations for
installing Aztec CG65, dearchived versions are also in the STDIO
subdirectory of the LIB directory.

1.5 The sbrk heap management function

sbrk provides an elementary means of allocating and deallocating
space from a program’s heap. shrk is called by the more sophisticated
heap-allocation functions (malloc, etc), and malloc is called by the
standard i/o0 functions; thus, if your programs call malloc or the other
high-level heap management functions, or if they call the standard i/o
functions, you will necd an shrk function.

You probably won’t have to modify sbrk, since the most system-
dependent code (which dcfincs the boundaries of the heap) is in the
startup routine.

A description of sbrk’s calling sequence is appended to this chapter.
1.6 The exit and __exit functions

exit and __exit arc called to terminate the execution of a program.
They aren’t usually called by ROM-based programs, since such
programs usually don’t terminate.

They are called, howcver, by RAM-based programs that are
running in an opecrating system environment, since these programs
usually do terminate.

- libgen.9 -

LIBGEN Aztec CG6S

When these functions are needed, you will have to modify __exit,
since it must return to the operating system. But you can probably use
exit as is, since it closes open files and devices in a system-independent
way and then calls __exit.

Descriptions of the calling sequences to exit and _ exit are
appended to this chapter.

2. Building the libraries

Once you’ve made modifications to the supplied unbuffered i/o
functions, you can build your libraries. We recommend that you
create the following libraries:

c.lib General purpose functions (¢cg65-compiled)
ci.lib General purpose functions (cci-compiled)
m.lib Floating point functions (cg65-compiled)
mi.lib Floating point functions (cci-compiled)

To simplify the creation of these libraries, Aztec CG65 contains
several "makefiles" that give directions to the make program
maintenance utility, and a few files that give directions to the /b object
module librarian. If you followed our recommendations for installing
Aztec CG6S5, each of the LIB directory’s subdirectories contains a
makefile that causes make to compile and assemble the subdirectory’s
source files. There is a makefile in the LIB directory that can be used
on systems having lots of memory, to have make first generate each
subdirectory’s object modules and then make a library.

Before you can generate the libraries, you must do several things:

1. In each makefile, modify the rules that define how to convert
a C source file to an object module, so that the command that
starts the compiler uses a +G option that correctly defines
Zero-page usage on your system,

2. Modify the zpage.h file in the INCLUDE directory. This file
defines the use of zero page for assembly language modules.

3. You’ve probably crcated a subdirectory of the LIB directory, a
subdirectory that contains your own unbuffered i/o modules.
In this subdirectory you should create a makefile that tells
make how to generatc object modules from your files.

4. In the LIB directory arc four files (c.bld, cibld, m.bld, and
mi.bld), each of which tells /6 how to create a library. c.bld
and ci.bld are used for generating ProDOS versions of c.lib and
ci.lib, so you will nced to modify these files. Some of the
changes that you’ll nced to make are these: (1) instead of
including the Apple // startup routine crt0.r that’s in the
PRODOS directory, include the 65xx ROM startup routine
rom.r that’s in the ROM directory; (2) instead of including the

- libgen.10 -

Aztec CG65 LIBGEN

ProDOS __main routinc that’s in the shmain.r module in the
PRODOS directory, include the 65xx ROM _ main routine
that’s in the umain.r module in the ROM directory; (3) replace
the ProDOS unbuffered i/0 modules with your own.

5. The environment variable INCL65 must be set to the name of
the INCLUDE dircctory; that is, to the name of the directory
that contains the include files. The command to do this varies
from system to system; on PCDOS, it’s the set command.

6. If you have a RAM disk, you can speed up the library-
generation process by defining it using the CCTEMP
environment variable. For more information, see the
description of CCTEMP in the Compiler chapter.

You are now ready to create the libraries. If your system has lots
of memory, you can create a library setting the default or current
directory to the LIB directory starting make, passing to it the name of
the library you want created. For example, to create c.lib, you would
enter;

make c.lib

For non-UNIX systems, a special makefile (named makepc) is provided
in libmake.arc that should be used in place of the standard makefile
(named make file). To make c.lib using makepc, type

make -f makepc c.lib

Once started, make will activate several other copies of make, each of
which will compile and assemble the files in one of LIB’s
subdirectories; it will then start /b, which will make the specified
library from the object modules that are in the subdirectories, as
directed by the appropriate .bld file.

If your system doesn’t have lots of memory (if there’s not enough
memory, make will abort with the message "EXEC failure"), you can
create and execute batch files that will generate the libraries. A batch
file will first, for each subdirectory, make that subdirectory the default
or current directory and then activate make, using the command make
rel to make cg65-compiled modules, or make int to make cci-compiled
modules. The batch file will then activate b, passing to it the name of
the appropriate .bld file.

3. Function descriptions

The System Indecpcndent Functions chapter presents the calling
sequences of most of thce functions that are discussed in this chapter.
The remainder of this chapter presents the calling sequences of the
other functions.

- libgen.11 -

BREAK (O) Heap management functions BREAK

NAME
sbrk

SYNOPSIS
void *sbrk(size)

DESCRIPTION
sbrk provides an elemcentary means of allocating and deallocating
space from the heap. More sophisticated buffer management
schemes can be built using this function; for example, the
standard functions malloc, free, etc call sbrk to get heap space,
which they then manage for the calling functions.

sbrk increments a pointer, called the *heap pointer’, by size
bytes, and, if successful, returns the value that the pointer had
on entry. Initially, the heap pointer points to the base of the
heap. size is a signed int; if it is negative, the heap pointer is
decremented by the specified amount and the value that it had
on entry is returned. Thus, you must be careful when calling
sbrk: if you try to pass it a value greater than 32K, sbrk will
interpret it as a negative number, and decrement the heap
pointer instead of incrementing it.

SEE ALSO
The functions malloc, free, etc, implement a dynamic buffer-
allocation scheme using the shrk function. See the Dynamic

Buffer Allocation section of the Library Functions Overview
chapter for morec information.

The standard i/0 functions usually call malloc and free to allocate
and release buffers for use by i/o streams. This is discussed in
the Standard I/O section of the Library Functions Overview.

Your program can safcly mix calls to the malloc functions, the
standard i/o functions, and sbrk, as long as the calls to sbrk don’t
decrement the heap pointer. Mixing sbrk calls that decrement
the heap pointer with calls to the malloc functions and/or the
standard i/o0 functions is dangerous and probably shouldn’t be
done by normal programs.

ERRORS
If an sbrk call is made that would result in the heap pointer
passing beyond the end of the heap, sbrk returns -1, after setting
the global integer errno to the symbolic value ENOMEM.

- libgen.12 -

EXIT (C) Program termination functions EXIT

NAME
exit, __exit

SYNOPSIS
exit(code)

__exit(code)

DESCRIPTION
These functions cause a program to terminate and control to be
returncd to the opcrating system.

code is returned to the operating system, as the program’s
termination code.

exit and __exit differ in that exit closes all files opened for
standard and unbuffered i/0, while __exit doesn’t.

- libgen.13 -

EXIT (O) Program termination functions EXIT

- libgen.14 -

TECHNICAL INFORMATION

- tech.1 -

TECH INFO Aztec CG65

Chabter Contents

Technical INOrMAtIONccvveveveies ceiereeees st st sresessseseesesassrsssessasenns tech
1. Memory OrganiZation cocccrereeeeereseesessssessssssessssssessssesssssrasessons 4
2. OVETIAYS worcereeiere s crnesaestasssssesessnessasssessessessessnasesatessensansesenssnss 7
3. Interfacing to Assembly Language coceenrerieerevenessensnssenes 14
4. Object Code FOrmatoceeveveene seveereneressssessessesenns eesressaseesaeensesrere 18
5. The PSEUAO SHACK ...covveves ceereeecreriirieesecesesesssesesnesessesnesessesessassssserneses 29

- tech.2 -

Aztec CG65S TECH INFO

Technical Information

This chapter discusses technical topics, and topics that couldn’t be
conveniently discussed elsewhere.

It’s divided into the following sections:

L.

Memory Organization. Discusses the factors that affect the
memory organization of a program.

Overlays. Describes overlays: what they are, and how they’re
used.

Mixing Assembler and C Routines. Describes how to interface
assembly language routines with C routines.

Object Code Format. Describes the format of object modules
and libraries.

The pseudo stack. Describes the pseudo stack that is used by
programs that have been created by Aztec CG65.

- tech.3 -

TECH INFO Aztec CG65

1. Memory Organization

A ROM program is organized into several sections. The linker lets
you specify the position of some of these sections, but for a ROM
system they are frequently positioned as follows:

ROM
fereterereettereesee st eeernrsress e seraesserensensenes | top of memory
| ptrs to power-up |
| & interrupt routines |
bueresrnsressensanssessssnssnsssesaoess |
| Copy of initialized data |
Leecereeestsenesnreesnrsssesesessssssnsessesaneasens |
| Code |
beveerseessresmneenessenesenasersseessssssanesesssesenes]

RAM
bevreereererensnrannsennssenesrssnsensressanessaseneseaes |
| Heap I
... }
| Overlay Area I
... |
j Uninitialized Data |
| (& pseudo stack) I
e re e e e s teres bt es et enne |
| Initialized Data |
beteeerteseseereae et s seseaes e e s s s a et enr e enens |
| Page I: |
| hardware stack |
boreeerieneseraraessrienneearesre st ssanssaessesseans |
| Page O |
foerrrernrsnsenereessesnsnssesessenssssnssanssessessons | bottom of memory

The following paragraphs discuss these areas.
1.1 ROM sections
1.1.1 The code area

The code area contains the executable code for a program’s root
segment (i.e. for its non-overlay segment).

1.1.2 Copy of initialized data

A program’s initialized data area resides in RAM and contains
global and static variables that are assigned an initial value. For
example, if the following statement occurs outside all functions, then
the variable var would be placed in the program’s initialized data area:

- tech.4 -

Aztec CG6S TECH INFO

int var=1;

Since the initialized data segment resides in RAM, its contents will
initially be unknown when the system is turned on. The Aztec CG65
startup routine sets up this segment, using the copy of the initialized
data area that resides in ROM above the code segment.

The ROM-resident copy of the RAM-resident initialized data area
is created automatically by hex65 when it translates the memory image
of the program, as generated by the linker, into Intel hex records.

1.1.3 Pointers to the power-up and interrupt routines

These pointers define the locations to which the 65xx will transfer
control when power is turned on, when the processor is reset, or when
an interrupt occurs. By default, they are generated by hex65 when it
converts the memory image of the program, as created by the linker,
into Intel hex records. hex65 sets the addresses of the .nmi, .begin, and
.irg routines in the nmi power-up/reset, and irq fields, respectively.

1.2 RAM sections

1.21 The Initialized Data Area
This area was discussed above.

1.2.2 The Uninitialized data area

This area contains the global and static variables that aren’t assigned
an initial value.

It also contains the area in which the program’s pseudo stack is
placed. The "pseudo stack” is a stack simulated by the Aztec CG65
software to get around the limitations of the 65xx hardware stack (the
hardware stack can be at most 256 bytes long).

When a program starts, the Aztec CG65 startup routine
automatically clears the uninitialized data area.

1.2.3 The Overlay Area

A program’s overlays are loaded into the overlay area. The size of
this area is set when you link the program’s root segment, to the sum
of the values specified in the +C and +D options. By default, these
options are set to zero, resulting in an overlay area that is zero bytes
long.

For more information on overlays, see the Overlay section of this
chapter.

1.2.4 The Heap

The heap is the area of memory from which buffers are
dynamically allocated.

- tech.S -

TECH INFO Aztec CG6S

As defined by the Aztec CG6S startup routine, the heap is 1 kb
long.

1.3 Symbols related to Program Organization

The following global symbols are related to program organization.
The symbols are given in the form that an assembly language program
would use to access them. A C module can access the symbols by
removing the appended underscore from the symbol name.

__Corg__ Name of the beginning of the program’s code.

_Cend__ Name of the first byte beyond the program’s
executable code.

__Dorg__ Name of the beginning of the program’s initialized
data.

__Dend__ Name of the first byte beyond the program’s
initialized data.

__Uorg__ Name of the beginning of the program’s uninitialized
data.

_Uend__ Name of the first byte beyond the program’s
uninitialized data.

mbot Name of a field containing a pointer to the beginning
of the program’s heap.

__Top__ Name of a field containing a pointer to the next byte
to be allocated from the heap.

__End__ Name of a field containing a pointer to the end of the
program’s heap.

1.4 For more information

For more information on the positioning of a program’s segments,
see the Tutorial chapter and the Linker chapter’s discussion of
segment-positioning options. '

- tech.6 -

Aztec CG6S Overlay Support TECH INFO

2. Overlay Support

In order to allow you to run programs which are larger than the
limited memory size of a microcomputer, Manx provides overlay
support. To use this feature, you must rewrite the unbuffered i/o
functions whose source is provided with Aztec CG65. This feature
allows you to divide a program into several segments. One of the
segments, called the root segment, is always in memory. The other
segments, called overlays, reside on disk and are only brought into
memory when requested by the root segment.

If an overlay is in memory when the root requests that another be
loaded, the newly specified overlay replaces the first in memory.

Overlays can also be "nested"; that is, an overlay at one level can
call another overlay nested on¢e level deeper. However, an overlay
cannot call an overlay which is at the same level

Figure 1 shows a program, run as a single module, that can be
logically divided into three segments. Figure 2 shows the same
program run as an overlay. In figure 2, module 1 and module 2 occupy
the same memory locations. A possible flow of control would be for
the base routine to call module 1, module 1 then returns to the root
and the root calls module 2, module 2 returns to the root and the root
calls module 1 again. Module 1 then returns to the root and the root
exits to the operating system.

Notice that all overlay segments must return to their caller and that
overlays at the same level cannot directly invoke each other.

0x800 il root segment il
0x9F0 i module 1 i
0x1C20 i module 2 i

- \

Figure 1

= =
0x800 ! root segment !
0X9F0 | | O0x9F0
1- module 1 H module 2 i
% B {

Figure 2

- tech.7 -

TECH INFO Overlay Support Aztec CG65

2.1 Calling an Overlay

A program segment (root or overlay) activates an overlay by calling
the Manx-supplied function ovloader, which must reside in the root.
The call has the form

ovloader(ovlyname, pl, p2, p3, ...)

where ovilyname is a pointer to a character string identifying the
overlay name, and pl, p2, p3, ... are parameters that are to be passed to
the overlay as its first, second, third, ... parameters.

ovloader derives the name of the file containing the overlay from
the string pointed at by oviyname, by appending the extension .ovr to
1t.

We provide you with the source to ovioader. When you compile it,
you define the directories in which it will look for overlays: compiling
it with the option -DPATH will cause it to search all directories
specified in the PATH environment variable; compiling it without this
option causes it to search just the current directory. If you create an
overlaid program that will run under ProDOS outside of the SHELL
environment or that will run under DOS 3.3, you must use a version
of ovloader for it that looks for overlays in just the current directory,
since environment variables are only available to programs running in
the SHELL environment.

Each overlay must contain a function named ovmain, which you
must write and which can be different for each overlay, and must also
contain the Manx-supplied function named ovbgn. When an overlay is
loaded, oviloader calls the overlay’s ovbgn function, which in turn calls
the overlay’s ovmain function, passing to it the second, third, ...
arguments that were passed to oviloader.

When ovmain completes its processing, it simply returns. oviloader
then returns to the caller, returning as its value the value that was
returned by ovmain.

An overlay can access any global functions and variables that are
defined in the root segment and in the overlays that are currently
active. For example, if the root calls overlay ovlyl, which calls overlay
oviyll, which calls overlay ovlylll, then ovilylll can access the global
variables and functions that are defined in the root, in the overlays
ovlyl and ovlyll, and in itself. But if the root also calls overlay oviy2,
oviylll cannot access the global functions and variables that are in
ovly2, since ovly2 is not active when oviyl11 is.

2.2 Creating a root and its overlays

To create a root and its overlays, the linker must be run several
times, once to create the root, and once for each overlay. Ea_ch
program segment (root or overlay) will be placed in a separate disk
file.

- tech.8 -

Aztec CG65S Overlay Support TECH INFO

The root must be created firstt When overlays are nested, an
overlay that itself calls overlays must be linked before the overlays that
it calls.

When creating a program segment (root or overlay) which calls an
overlay, the option -R must be specified; this causes the linker to
generate a symbol table for use in linking the called overlay, placing it
in a file whose filename is the same as that of the first file specified in
the command line and whose extent is .rsm. When an overlay is
linked, the symbol table file of the program segment that calls the
overlay must be included in the linkage of the overlay.

When the root module is linked, the linker has to reserve some
space into which the overlay can be loaded. This is done using the +C
and +D linker options, which define the amount of space needed for
the overlay code and data, respectively. If overlays are nested, a called
overlay is located in memory immediately following the calling
overlay. The amount of space reserved for the overlays must be
enough to hold the longest *thread’ of overlays.

2.3 Example 1: Non-nested Overlays

This example demonstrates overlay usage when the overlays are not
nested. The root segment, which consists of the function main and any
necessary run-time library routines, behaves as follows:

1. It calls the overlay oviyl, passing as a parameter a pointer to
the string "first message”.

2. It prints the integer value returned to it by oviyl;

3. It calls the overlay ovly2, passing a pointer to the string
"second message";

4. It prints the integer value returned to it by oviy2.

The overlay oviyl consists of the function ovlyl, the Manx function
ovbgn, and any necessary run-time library routines. It prints the
message "in ovlyl" plus whatever character string was passed to it by
main,.

The overlay ovly2 consists of the function ovly2, the function
ovbgn, and any necessary run-time library routines. It prints the
message "in ovly2”, plus whatever character string was passed to it by
main.

- tech.9 -

TECH INFO Overlay Support Aztec CG65

Here then is the main function:

main() {
int a;
a = ovloader("ovly1","first message”);
printf("in main. ovlyl returned %d\n", a);
a = ovloader("ovly2","second message");
printf("in main. ovly2 returned %d\n",a);

)

Here is oviyl:

ovmain(a)
char *a;

printf("in ovlyl. %s\n",a);
return I;

}

Here is ovly2:

ovmain(a)
char *3a;

printf("in ovly2. %s\n",a);
return 2;

)

The following commands link the root (which is in the file root.c)
and the overlays:

In65 -R +C 4000 +D 1000 root.r ovloader.r -Ic
In65 oviyl.r ovbgn.r root.rsm -ic
In65 ovly2.r ovbgn.r root.rsm -I¢

The command to link the root reserves 0x4000 bytes for the
overlay’s code and 0x1000 bytes for it's data. Techniques for
determining this value are discussed below.

When the segments are generated and the root activated, the
following messages appear on the console:

in ovlyl. first message.

in main. ovlyl returned 1.
in ovly2. second message.
in main. ovly2 returned 2.

2.4 Example 2: Nested Overlays

In this example, there are three segments: a root segment, root, and
two overlays segments, ovlyl and ovly2. root calls oviyl, which calls
ovly2. ovly2 just returns.

- tech.10 -

Aztec CG65 Overlay Support TECH INFO

Here is the root

main()

ovloader("ovly1","in ovlyl");

)

Here is ovlyl:

ovmain(a)
char * a;

printf("%s\n",a);
ovioader("ovly2", "in ovly2");

)

Here is ovly2:

ovmain(a)
char *a;

printf("%s\n",a);

The following commands link the root and the two overlays:

In65 -R root.r ovloader.r -Ic
In65 -R ovlyl.r ovbgn.r root.rsm -Ic
In65 ovly2.r ovbgn.r ovlyl.rsm -Ic

When executed, the following messages appear on the console:

in ovlyl
in ovly2

2.5 Determining the size of the overlay area

When you link the root module, you will have to know how much
memory to reserve for the overlay, that is, you will have to know how
large the overlay is. But since the overlays haven't been linked yet,
how can you know how much space is needed for overlays?

The easiest way is to guess. That is, estimate the size and go ahead
and link the root and the overlays, keeping track of the size of the
code and data for the overlays as reported by the linker.

After all overlays have been linked, the size of the area needed for
overlays is the size of the largest overlay (if overlays aren’t nested) or
the size of the longest *thread’ of overlays (if they are nested). You can
then go back and relink the root, if necessary, with this value. You
won’t have to relink any overlays, since the +C and +D options don’t
affect the position of the overlays in memory.

- tech.11 -

TECH INFO Overlay Support Aztec CG65S

2.6 Error messages from ovloader

If an error occurs while loading an overlay, ovioader will print a
message of the form

Error %d loading overlay: %s

where %d is a number defining the error and %s is the name of the
overlay. The error codes and their meanings are:

10 Can’t open overlay file

20 Can’t read overlay header record

30 Invalid header record

40 Overlay code & data overlaps with heap
50 Error reading overlay

2.7 Possible Problems

A possible source of difficulty in using overlays concerns initialized
data. In the following program module, a global variable is initialized:

inti=3;

function()

{

return;

}

The initialization of "i" is performed by the linker, rather than at
run time. In the same program, the following module is allowed:

int i;
main()

function();

The global variables in each module refer to the same integer, "i".
At link time, this variable is set to the value 3. Although this works
when the two modules are linked together, a problem arises when the
first module is linked as an overlay:

In65 func.r ovbgn.r main.rsm -Ic

From the .rsm file, the linker knows that "int i" has been declared
in main.r, the root. But it tries to initialize "i" from the statement in
the func.r module. This attempt fails because the variable "i" is part of
main.r, a module which is not included in the linkage.

An attempt to initialize, in an overlay, a variable which has been
declared in the root will produce an error:

attempt to initialize data in root

- tech.12 -

Aztec CG65 Overlay Support TECH INFO

The simple solution is to change the statement, "int i = 3", to the
following:
int i;
i=3;

This assignment will be performed at run time, so that the linker
does not try to perform an initialization.

2‘8 Source

The source for the ovioader and ovbgn functions are in the files
ovld.c and ovbgn.a65. ovid must be compiled by cg65; as mentioned
above, it can be compiled with or without the option -DPATH, as
defined above. ovbgn must be assembled using as65.

- tech.13 -

TECH INFO Assembly Language Functions Aztec CG65

3. Interfadng to Assembly Language

This section discusses assembly-language functions that can call, or
be called by C-language functions.

3.1 Naming Convention

The compilers translate a global function or variable name into
assembler by truncating it to contain no more than 31 characters,
appending an underscore character ’_’ to the truncated name, and
then generating a public directive for the resultant name.

For example, the following assembly language statements define the
entry point to an assembly language function that would be referred to
in a C language program using the name sunt

public sum__
sum__ ;entry point to sum

3.2 Calling and Returning

On entry to a function, information about the call are at the top of
both the 6502 hardware stack and the pseudo stack

At the top of the 6502 stack is the function’s primary return
address; this is the address to which the function should return by
issuing an rts instruction. A non-reentrant function (ie, a function that
doesn’t call itself) can leave its return address on the 6502 stack and
then return by issuing the 6502 r¢s instruction. For example, the very
simplest assembly language function, which does nothing but return to
the caller, would consist of just an rzs instruction:

public nop__
nop__ rts

Because of limitations of the 6502 stack, a reentrant function
should save its return address on the pseudo stack. When done, it
should return by doing an indirect jmp to the location whose address is
one greater than the saved address.

3.3 Returning a value

A function can return an in¢ or long value by setting the value in
pseudo register RO, which is located in memory page 0. (The equ
statements that defines RO and all the other 0 page locations used by
Aztec C-generated programs are in the file zpage.h). The bytes of the
value are stored in order, with the least significant byte at address 8
and the most significant byte at the highest addressed location.

For example, here’s a function that always returns the int value 1:

- tech.14 -

Aztec CG65 Assembly Language Functions TECH INFO

instxt "zpage.h"

public one__

one__ lIda #]
sta RO
Ida #0
sta RO+1
rts

3.4 Passing parameters

On entry to a function, the parameters that are being passed to the
function and a secondary return address are on the pseudo stack, and
are accessed using the field named SP that is located in memory page 0
and that points to the top of the pseudo stack. Note: as with R0, the
equ statement that defines SP is in the file zpage.h.

At the top of the pseudo stack is the two-byte secondary return
address. This is a different address from the return address that is on
the 6502 stack - a function should return using the address that’s on
the 6502 stack. The secondary return address is discussed in the
section of the Tech Info chapter that discusses the pseudo stack.

Above the secondary return address on the pseudo stack are the
parameters that are being passed to the function. The function
parameters are in order on the pseudo stack, with the first parameter
immediately following the secondary return address, the second
parameter following the first, and so on. The bytes for a parameter are
also on the pseudo stack in order, with a parameter’s least significant
byte at the lowest address and its most significant byte at the highest
address.

For example, suppose the function sum is passed two parameters, as
follows:

sum(argl, arg2);

On entry to sum__, the pseudo stack will look like this (SRA means
"secondary return address"):

- tech.15 -

TECH INFO Assembly Language Functions Aztec CG6S

T
arg2, high byte

arg?, low byte

argl, high byte

argl, low byte

SRA, high byte

SRA, low byte

3.5 An Example

The following assembly language function, named sum, is passed
two infs as arguments. It returns their sum as its value.

instxt "zpage.h"

public sum__
sum__ clc

dy #2

Ida (SP),Y

Idy #4

adc (SP),Y

sta RO

1dy #3

lda (SP),Y

1dy #5

adc (SP),Y

sta RO+1

rts

3.6 Page 0 Usage

A 6502 program makes extensive use of memory page 0. An
assembly language 6502 function should obey the following restrictions
on its usage of memory page 0 locations:

* It may use, without preserving, the two-byte-long VAL field
and the following four-byte-long fields: VAL, RO, R1, R2, R3,
R4, and TMP.

* It must preserve the contents of the SP, FRAME, and
LFRAME (alias PC) fields and of the 16-byte REGS ficld.

These locations are defined in the file zpage.h.

- tech.16 -

Aztec CG65 Assembly Language Functions TECH INFO

3.7 Writing Programs that contain only Assembler

There are several topics concerning the linker which are important
if the assembler and linker are to be used without any compiled code.
The linker automatically creates several symbols that can be of use to
an assembly language program, defining the beginning and end of the
various program segments. These are described in the Mermory
Organization section of this chapter.

The entry point to a program is defined using the assembly
language statement

entry loc

where loc is the name of the symbol where program execution is to
begin. If a module containing an entry statement isn’t encountered by
the linker, it will set the program’s entry point to the beginning of its
code segment. For a discussion of the startup routines that are
provided with Aztec C65, see the Command Programs section of this
chapter.

3.8 Mixing C and Assembler in one Module

To include assembly language source in a C language module,
surround the assembly language code with #asm and #endasm
directives.

Finding a good example where this construct is necessary is very
difficult, but here’s a possible example:

rotate(arg)

register int i;

1= arg;
#asm

Ida $81

rol A

rol $80

rol $$1
#endasm

return(i);

}

This routine rotates a two byte quantity one bit to the left. This
operation is messy in C and in a time critical application not feasible
to make an assembly language subroutine. This routine is not a good
example, since it would be better to write the entire thing in assembly.
However, in the middle of a larger routine, it might conceivably be
useful. This facility is provided as a last resort and is generally not
recommended as it is completely non-portable.

- tech.17 -

TECH INFO Object Code Format Aztec CG65S

4. Object module format

This section describes the format of object modules and libraries.
The symbols and structures referred to in this paper are defined in the
header file object.h.

4.1 Object Module Format

An object module contains four sections: header, code, table of
named symbols, and table of unnamed symbols. These sections are
described in the following paragraphs.

4.1.1 The Header Section

The header section of an object module has the following structure:

struct module {
int m__magic; /* type of object module */
char m__name{8];/* module name */
unsigned short m__code; /* module’s code size */
unsigned short m_ data; / * module’s data size "‘/
unsigned short m__static; /* module’s bss data size */
unsigned short m global, /*named sym tbl off.*/

short m__nglobal;/* # of named symbols */
unsigned short m__local; /*unnamed sym tbl off.*/
short m__ nlocal; /* # of unnamed symbols */

unsigned short m__end; /* unnamed sym tbl end*/
unsigned short m__next; /* offset to next module */
unsigned short m__nfix /* # segment fixes required */
%
The following paragraphs discuss the fields within the header structure.
m__magic
Each of the different object module-related files created by
the Aztec C software begins with the m__magic field, which

contains a "signature" that identifies the file’s contents.
m__magic can have the following values:

M_MAGIC Object module created by the assembler
M_OVROOT Rsm file created by the linker
M_LIBRARY Library of object modules

m__name

Contains the name of the object module. For object modules
created by the assembler and for rsm files, this field normally
contains null characters.

m__code, m__data, and m__ static

Contain the size, in bytes, of an object module’s code, data
and uninitialized data segments, respectively.

- tech.18 -

Aztec CG65 Object Code Format TECH INFO

m__global and m__nglobal

m__global contains the offset, in bytes, from the beginning of
the module to the module’s table of named symbols.
m__nglobal contains the number of entries in this table.

m__local and m__nlocal

m__local contains the offset, in bytes, from the beginning of
the module to the module’s table of unnamed symbols.
m__nlocal contains the number of entries in this table.

m__end

m__end contains the offset, in bytes, from the beginning of
the module to the end of its table of unnamed symbols.

m__next

m__next contains the offset, in bytes, from the beginning of
the module to the end of the module.

4.1.2 Symbol Tables

An object module contains two types of symbols: unnamed and
named. An ‘unnamed symbol’ is a symbol whose name begins with a
period followed by a digit. A ‘named symbol’ is any symbol that is not
unnamed.

An object module has two symbol tables, one containing its named
symbols, and the other its unnamed symbols. A symbol table contains
entries, each of which describes one of the module’s symbols. The
entry for a symbol has the following structure:

struct symtab {
char s_type; /* type of symbol ¥/
char s_flags; /* attributes of symbol */
unsigned short s__value; /* another attr of symbol */

}

In addition, the entry for a named symbol is followed by a null-
terminated string, which is the symbol's name.

The following paragraphs discuss the fields of the symab structure.
s_type

The s__type field in a symbol’s table entry defines the type of
the symbol Possible values:

S_ABS Symbol was defined to be a constant
value, wusing the assembler’s eqgu
directive.

S_CODE Symbol was defined within the code
segment.

S_DATA Symbol was defined within the data

- tech.19 -

TECH INFO Object Code Format Aztec CG65

segment.

S_UND . Symbol was used but not defined within
the program. Symbols that are defined
using the assembler’s public directive
but aren’t defined in any statement’s
label field have this type, as do symbols
defined using the assembler’s global
directive. The directive used to define
a S__UND symbol can be determined
from the symbol's s_value field, as
defined below.

S_BSS Symbol was defined wusing the
assembler’s bss directive.

s_ flags
This field defines other attributes of a symbol. Possible values:

S_GLOBL Set for symbols specified in public and
global directives.

S__FIXED Set for symbols defined in some
statement’s label field.

s__value

The meaning of this field depends on the type of the symbol
Symbol types and their associated values are:

s_type Meaning of s__value

S_ABS Value specified for the symbol in the
equ directive.

S_CODE Offset of the symbol from the beginning

of the module’s code segment.
S_DATA Offset of the symbol from the beginning
of the module’s data segment.

S__BSS Size, in bytes, of the symbol as defined
in the bss directive.
S_UND For an S__UND symbol, s_ value is zero

if the symbol was defined in a public
directive and non-zero if it was defined
in a global directive. For a global-
defined symbol, s_value contains the
value specified in the directive’s size
operand.

4.1.3 The Code Section

The code section of an object module contains a translated version
of the program. This format can be efficiently processed by the linker
as it generates an executable version of the program. It contains a
sequence of items, each of which directs the action of the linker. For
example, some items contain actual code and data, which the linker

- tech.20 -

Aztec CG65 Object Code Format TECH INFO

places in the output file, some cause the linker to reserve space in the
output file, and some just pass information to the linker.

The linker builds several segments of a program simultaneously: a
code segment, data segment, and an uninitialized data segment.
Exactly one of these segments is said to be *selected’ at a time. There
are loader items that select a segment.

The linker maintains a location counter for each of the segments
that it is building When a loader item requests that information be
placed in the program or that space be reserved in it, the linker
performs the requested operation in the current location of the
currently-selected segment.

A loader item is a sequence of one or more bytes, with the first
byte containing a code that identifies the item. Some codes are four
bits long, and some are eight bits long; in the former case, the code
occupies the most significant four bits of the byte.

Frequently, a loader item is two bytes long, with the item’s code in
the high order four bits of the item’s first byte and a value in the other
12 bits. In this case, the value’s least significant four bits are stored in
the first byte’s least significant four bits, and the wvalue’s most
significant eight bits are stored in the second byte. We call this format
"12-bit packed".

Descriptions of the loader items follow.
USECODE - Select code segment

The USECODE loader item selects the code segment. Data
generated by loader items that follow the USECODE item will
be placed in the code segment until another segment is
selected.

The code for a USECODE loader item is 8 bits long: 0xf4.
USEDATA - Select initialed data segment

The USEDATA loader item selects the initialized data
segment. Data generated by loader items that follow the
USEDATA item will be placed in the code segment until
another segment is selected.

The code for the USEDATA loader item 1s Oxf35.
ABSDAT - Absolute data

The ABSDAT loader item defines a sequence of bytes that the
linker is to output ’as is’ to the current location in the
currently-selected segment.

The loader item’s first byte contains the code identifier, 1,
in the most significant four bits, and the number of bytes to
be output, less one, in the least significant four bits. Thus,

- tech.21 -

TECH INFO Object Code Format Aztec CG65
this item can define one to sixteen bytes of absolute data.
The remaining bytes in the item are the absolute data.

For example, the following ABSDATA loader item defines
the three bytes Al, B2, and C3:

12 A1 B2C3
LCLSYM - local (ie, unnamed) symbol

The value of a LCLSYM loader item is the address at which
an unnamed symbol is located in memory.

The item is two bytes long, with the item’s code, 6, in the
first byte’s most significant four bits. The item’s other twelve
bits contain the number of the symbol’s entry in the local
symbol table, in 12-bit packed format.

For example, given the assembly language code

dw .98
.98 dw 12

with .98 occupying the second entry in the table of unnamed
symbols, the following code would be generated for the dw
.98:

6100
GBLSYM - Global Symbol

The GBLSYM loader item is just like LCLSYM except that it
references an entry in the global symbol table rather than the
local symbol table.

The code for GBLSYM is the four-bit value 7.
SPACE - Reserve space

The SPACE loader item reserves a specified amount of space
at the current location in the currently-selected segment.

The item is two bytes long, with the item’s code, 8, in the
most significant four bits of the item’s first byte. The other
twelve bits contain the number of bytes to reserve, less one,
in 12-bit packed format.

For example, the following loader item reserves 5 bytes:
84 00
CODEREF - Code segment offset

The CODEREF loader item defines an offset from the
beginning of the module’s code segment. The loader item has
as 1ts value the absolute address corresponding to that offset.

- tech.22 -

Aztec CG65 Object Code Format TECH INFO

The CODEREF loader item is in two bytes, with the
CODEREF code, 0xa, in the high-order four bits of the item’s
first byte. The item’s other 12 bits contain the offset, as a
positive number, in 12-bit packed format.

DATAREF - Data segment offset

The DATAREF loader item is the same as the CODEREF
loader item, except that the offset is relative to the beginning
of the module’s data segment.

The code for DATAREEF is Oxb.
BSSREF - BSS segment offset

The BSSREF loader item is the same as the CODEREF loader
item, except that the offset is relative to the beginning of the
module’s bss segment.

The code for BSSREF is Oxc.
LRGCODE - Code segment offset, large form

The LRGCODE loader item takes a 16-bit value that
represents an offset from the beginning of its code segment,
and generates as its value the absolute memory address of the
location.

The loader item is in three bytes. The first byte contains
the item’s 8-bit code, 0xf7, the second contains the offset’s
least significant eight bits, and the third contains the offset’s
most significant eight bits.

LRGDATA - Data segment offset, large form

The LRGDATA loader item is the same as LRGCODE except
that the offset is relative to the beginning of the module’s data
segment,

The code for the LRGDATA loader item is 0xf8.
LRGBSS - BSS segment offset, large form

The LRGBSS loader item is the same as LRGCODE except
that the offset is relative to the beginning of the module’s BSS
segment.

The code for the LRGBSS loader item is Oxfb.
SMLINT - small integer

The SMLINT loader item defines an integer between 0 and
15, inclusive. This item can be used by itself or as an element
of an EXPR loader item

The loader item consists of a single byte. Its most
significant four bits are the item’s code, 3; and the least

- tech.23 -

TECH INFO Object Code Format Aztec CG65

significant four bits are the integer value.
For example, the following defines the integer value 8:
38

SMLNEG - Small negative integer

The SMLNEG loader item defines a negative integer between
-1 and -16 inclusive. It can be used by itself or in an EXPR
loader item.

The loader item is a single byte: the high order 4 bits are
the item’s code, 4. The low order four bits are the absolute
value of the integer, less 1.

For example, the following defines the negative value -8:
47

MEDINT

The MEDINT loader item defines an integer in the range
-2048 to 2047, inclusive, that can be used by itself or in an
EXPR loader item.

The item consists of two bytes, with the high-order four
bits of the least significant byte containing the item’s code, 5,
and the remaining twelve bits defining the value, in 12-bit
packed format.

The value is in ’excess-2048’ notation. The number
actually in the 12-bit field is an integer between O and 4095;
the integer denoted by the item is derived from the actual
integer by subtracting 2048 from it.

For example, the following represents the value -1024:
50 40

LRGINT - Large integer

EXPR -

The LRGINT loader item defines an integer in the range
-32K to +32K, for use in an expression loader item.

The item consists of three bytes. Its first byte contains the
8-bit code identifying the item, Oxf3. The other two bytes
contain the value, in two’s-complement notation.

Evaluate expression

The EXPR loader item has as its value the 16-bit value of the
expression that follows it The size of the loader item
depends on the size of the items that comprise the expression.
The most significant four bits of the item’s first byte contains
the code for the loader item, 2, and the least significant four
bits contain a code for the operation that is to be performed

- tech.24 -

Aztec CG6S Object Code Format TECH INFO

on the loader items that follow. The codes and their
corresponding values and operations are:

code value operation

ADD 1 Add the two loader items that follow

SUB 2 Subtract the following two loader items

MUL 3 Multiply the following two loader items

DIV 4 Divide the first item that follows by the
second

MOD 5 Compute the modulus of the first item
relative to the second.

AND 6 Logical AND of the following two items

OR 7 Logical OR of the following two items

XOR 8 Exclusive OR of the following two
items

RSH 9 Right shift first item the number of bits

defined by second item

LSH 10 Left shift first item the number of bits
defined by the second

NOT 11 Logical NOT of item that follows

NEG 12 Compute two’s complement of the item
that follows

The items that can follow an EXPR item are SMLINT,
MEDINT, LRGINT, LCLSYM, GBLSYM, CODEREF,
DATAREF, BSSREF, LRDCODE, LRDDATA, LRDBSS, and
another EXPR.

For example, given the assembly language code
dw a+4

with the entry for a being the fourth entry in the table of
named symbols, the following loader items would be
generated:

21 7300 34

As mentioned above, an EXPR can have another EXPR as
one of its loader items. In this case, the inner EXPR is
evaluated, using the loader items that follow it, and then the
outer EXPR is evaluated, using the resultant value of the
inner EXPR as one value and whatever loader items are left
for the other values. The loader items for the entire
expression are thus in prefix-Polish notation. For example,
the above expression, a+4, is represented by the loader items
that correspond to

+a4
And the expression

- tech.25 -

TECH INFO Object Code Format Aztec CG65

BEXPR

BREL -

WREL -

(at+b)*c

would be represented by loader items that correspond to
*+abc

- Evaluate byte expression

The BEXPR loader item has as its value the 8-bit value of the
expression that follows it BEXPR has an 8-bit code, 0xfl.
BEXPR doesn’t have an extra four bits in which an operation
code can be placed; thus, to generate an 8-bit value from an
expression, a BEXPR loader item will usually precede an
EXPR loader item that is in turn followed by the loader items
for the expression.

compute offset from location counter, byte form

The BREL loader item takes a relocatable value that
represents a location in the module and generates the offset of
the location from the current location counter.

The BREL loader item begins with a 8-bit code, 0xf2. It’s
followed by loader items representing the location.

For example, if the symbol abc is the fourth symbol in the
global symbol table, then the loader items to generate the
offset of the location that is four bytes beyond abc are

£2 21 73 00 34
compute offset from location counter, word form

The WREL loader item is the same as BREL except that it
generates a 16-bit value instead of an 8-bit value.

STARTAD - Define program start address

INTJSR

The STARTAD loader item defines the address at which a
program containing the module is to begin execution.

The item begins with the item’s 8-bit code, Oxf6. It's
followed by loader items identifying the starting address; these
can be GBLSYM, LCLSYM, EXPR, or any of the other
"expression items" mentioned above.

- Generate opcode for a subroutine call

The INTISR loader item is translated by the linker into a
machine-specific opcode that will cause a subroutine to be
called. The loader item has the value 0xf9.

The instructions in a function that has been compiled with
the interpretive compiler consist of a call to the Aztec
interpreter routine followed by the function’s other
instructions. This first instruction is directly executed by the

- tech.26 -

Aztec CG65 Object Code Format TECH INFO

machine; the function’s other instructions are in a pseudo
code that is indirectly executed, by the Aztec interpreter.

It is desirable to allow the interpretive compiler to
generate object modules that can be executed on different
machines, and to allow a single object module generated using
this compiler to be linked for execution on different
processor chips. To support this, the interpretive compiler
generates as a function’s first instruction a special call
instruction, in the pseudo code assembly language, to the
interpreter. The pseudo code assembler translates this
instruction into an INTJSR loader item followed by a
GBLSYM loader item that references the interpreter routine.
The machine-specific linker then translates this pair of loader
items into a machine-specific call to the interpreter.

THEEND - End of code

The THEEND loader item identifies the end of the code
section of the object file.

The code for the item is 00.

4.2 Object Library Format

A library of object modules consists of the object modules and a
directory of symbol names.

4.2.1 Object Modules in a Library

When an object module is placed in a library its sections are
reorganized but the contents of the module are left unchanged (with
the exception of the module’s header, whose fields are modified to
reflect the reorganization). The module’s header still is at the
beginning of the module. This is followed by the table of named
symbols, the table of unnamed symbols, and the code section.

The header is modified to define the positions of the tables in the
reorganized module, and the module is given a name in its m__name
field. The name is derived from the name of the file that contained
the module by removing the file name’s extension.

4.2.2 Library Dictionary

A library’s dictionary consists of one or more blocks that are
chained together. A block has the following structure:

struct newlib {
short nl__magic; /* magic number for libraries */
unsigned short nl_next; /* loc of next dir block */
char nl__dict{ LBSIZE]; /* dictionary for block */

)

- tech.27 -

TECH INFO Object Code Format Aztec CG65

nl__dict contains entries, each of which defines one symbol that is
defined in a library module. The entry for a symbol consists of a short
int that defines the position of the module that defines the symbol (the
absolute location at which the module begins, divided by 128), and a
null-terminated string that is the symbol’s name.

- tech.28 -

Aztec CG65 Pseudo Stack TECH INFO

5. The pseudo stack

Information in the zero page and in the pseudo stack can be used in
conjunction with a linker-generated symbol table to help debug a
program. For example, when a program mysteriously aborts and exits
to the monitor, this information can be used to determine where the
program was and how it got there.

During the execution of a program, the pseudo stack contains a list
of "frames", each of which contains information about a function that
has been called but hasn’t returned. A function’s frame defines the
parameters that were passed to it, the address to which it will return,
the values of its local variables, information about the function that
called it, and other information.

At the top of the pseudo stack is the frame for the "active"
function; that is, about the currently-executing function. Above that is
the frame for the function that called the active function; above that is
the frame for the function that called the function that called the
active function, and so on, back to the frame for the first function
called by the program’s startup code.

A function’s frame has the following organization:

1
|
| parameters |
| passed to function |

| secondary
| return addr

calling func’s
page 0 info
& misc info

|

|

|

E

| caller’s register
| variables

| (cg65 funcs only)
I-
I
|
|

called func’s
local vars

| temporary |
| storage |
[e P | <-- SP

In the above diagram, SP, FRAME, and LFRAME are the names of
zero-page fields that point to areas within the frame of the active
function. These fields are defined in the file zpage.h, along with other
zero page fields used by Aztec C-compiled functions, as described in
the Memory Organization section of the Tech Info chapter.

- tech.29 -

TECH INFO Pseudo Stack Aztec CG65

The LFRAME field is used for two purposes: when a function that
has been coppiled with the cg65 compiler is active, this field goes by
the ngme L ME and pomts into the active funcnon s frame. When
a cci- compxled function is active, this field goes by the name PC and
acts as a program counter, pointing to the next pseudo-code instruction
that is to be executed by the Aztec interpreter routine.

Locations in the active function’s frame are specified by adding a
value to the contents of a zero page field. To abbreviate the definition
of these locations, the following paragraphs will refer to them using an
expression consisting of the parenthesized name of the zero-page field
plus or minus the value. For example, the expression (FRAME)+11
refers to the location within the active function’s frame whose address
is obtained by adding eleven to the contents of the zero page field
named FRAME.

5.1 Secondary Return Address

The secondary return address field in a called function’s frame,
which we’ll refer to here as SRA, defines the address within the calling
function at which execution will continue when the called function
returns.

To be exact, if the calling function was compiled with cgé65,
execution within it will continue at the address (SRA)+1; ie, at the
location whose address is one greater than that contained in the called
function’s secondary return address field.

If the calling function was compiled with cci and if no parameters
were passed to the called function, execution of pseudo-code
instructions within the calling function by the interpreter will resume
at address (SRA). If parameters were passed, execution will instead
resume at address (SRA)+1.

The secondary return address field for the active function is in the
two-byte field the begins at address (FRAME)+9; ie, 9 bytes above the
location within the active function’s frame that is pointed at by the
zero page FRAME field.

5.2 Determining the function in which a program aborted

When a program aborts and exits to the monitor, the first thing you
should do is determine the identity of the active function. This can be
done as follows:

1. Find the active function’s secondary return address;

2. In the code that precedes this address, find the address of the
active function;

3. From the program’s linker-generated symbol table, find the
name of the active function.

If the address of the active function isn’t in this table, because the
function is declared to be static, you can at least determine from an

- tech.30 -

Aztec CG65 Pseudo Stack TECH INFO

examination of the symbol table the module in which it was defined

The function calling sequences are different for cg65- and cci-
compiled functions. So the following paragraphs first describe the
code generated for a function call by the two compilers and then
describe how to examine it to find the address of a called function.

5.2.1 Calling sequence for cg65-compiled functions

The cg65 compiler translates a direct function call into 6502 code
thdt first pushes the arguments onto the 6502 stack and then issues a
Jjsr to the Aztec routine .cpystk. Following the jsr is a two-byte field
that contains the address of the called function and then a one-byte
field that defines the number of bytes that the called function’s
parameters and secondary return address will occupy on the pseudo
stack. The secondary return address of the called function is set to the
calling sequence’s one-byte field.

For example, suppose the following call is made to the function
func:

func(a,b,c,d)

The compiler will first generate code to push &, ¢, b, a (in that order)
onto the 6502 stack. Then it will generate the following code:

jsr .cpystk
fdw func__
fcb 10

.cpystk will pull the arguments off the hardware stack, push them
onto the pseudo stack, push the address of the fcb 10 onto the pseudo
stack and issue a jsr to func. The address of the fcb 10 is the called
function’s secondary return address.

cg65 translates an indirect function call (eg, (*foo)()) into 6502
code that pushes the arguments on the 6502 stack, moves the address
of the function into RO (the zero-page simulated register), and issues a
Jsr to the Aztec routine .cpystk2. Then cg65 generates a one-byte field
that defines the number of bytes on the pseudo stack that the
function’s parameters and secondary return address will use. The
secondary return address of the called function is set to the address of
the one-byte field.

5.2.2 Calling sequence for cci~compiled functions

The cci compiler translates a direct function call by first generating
pseudo-code that pushes the parameters onto the pseudo stack. It then
generates a three-byte call pseudo-instruction, consisting of an op code
(Oxac if no parameters are specified in the call, Oxe9 if there are
parameters) and a two byte field containing the address of the called
function. The secondary return address of the called function is set to
the byte that follows the interpreter’s call instruction.

- tech.31 -

TECH INFO Pseudo Stack Aztec CG65

cci translates an indirect function call into pseudo code that first
pushes the parameters onto the pseudo stack, then loads the called
function’s address into RO. It then generates a one-byte call pseudo
instruction (0xdd if no parameters arre specified, Oxea if they are).
The secondary return address of the called function is set to the
address of the byte following the call instruction.

5.2.3 Examining the calling sequence

To find the address of the active function from the sequence of
instructions that called it, you should examine the bytes that precede
the function’s secondary return address:

* If the fifth through the third preceding bytes are jsr .cpystk
(indicating a direct function call from a cg65-compiled
function) or if the third preceding byte is Oxdd or Oxea (a
direct function call from a cci-compiled function), the second
and first preceding bytes contain the address of the function.

* If the fifth through the third preceding bytes are jsr .cpystk2
(an indirect function call from a cg65-compiled function), or
if the third preceding byte is Oxac or 0xe9 (an indirect
function call from a cci-compiled function), you’ll have to
find the function address by examining the variables from
which the function address was computed.

5.3 Determining the parameters passed to the active function

To determine the parameters that have been passed to the active
function, you should first determine the identity of the active
function. This knowledge will then give you the number and types of
the function’s parameters. You can then simply examine the
function’s arguments on the pseudo stack: the first parameter begins at
address (FRAME)+11 and occupies the number of bytes appropriate
for a value of its type. The second parameter begins immediately
above the first, and occupies the required number of bytes, and so on.

5.4 Determining the values of the active function’s local variables

The active function’s local variables occupy a section of the
function’s frame on the pseudo stack. This section extends downward
from the first byte below the location pointed at either (1) by the
zero-page LFRAME field, if the function was compiled by cg65 or (2)
by the zero-page FRAME field, if it was compiled by cci.

Local variables are allocated space in a function’s frame in the
order in which they are defined, at successively decreasing locations.
For example, consider the following function:

- tech.32 -

Aztec CG65 Pseudo Stack TECH INFO
foo()
{

int a,b,c;

)

The local variable a will occupy the first two bytes below the location
pointed at by LFRAME (for a cg65-compiled function) or FRAME
(for a cci-compiled function); b will occupy the next two bytes, and ¢
will occupy the next two bytes.

5.5 Determining the values of register variables for the active function

Register variables are supported only for cg65-compiled functions.
There are eight two-byte pseudo registers. They are in the zero page,
beginning at the location whose name is REG (defined in zpage.h to
be 0x80).

Variables are allocated to registers in the order in which their
declarations are encountered. For example, consider the following
function:

foo(a,b,c)
register int b;

int d;
register ¢;
int f}

)

The variable b will occupy the register at addresses REG and REG+1,
and the variable d occupies the register at REG+2 and REG+3.

5.6 Function entry and exit

When a function is entered, the zero page fields SP, FRAME, and
LFRAME are saved, and updated for the new function. The saved
values are then moved into the new function’s frame, in locations
(FRAME)+2, (FRAME)+4, and (FRAME)+6. When the function is
exited, these fields are restored.

When a function is entered, its primary return address, which is on
the top of the hardware stack, is saved in the new function’s frame, in
location (FRAME).

When a C function calls another function, the call is indirectly
made by transferring control to an intermediary routine, which in turn
calls the other function. When the called function returns, control is
again transferred to the intermediary routine, which then returns to
the calling function. A called function’s primary return address is the
address in the intermediary routine to which control is returned by
issuing an rts from the called function. And the called function’s

- tech.33 -

TECH INFO Pseudo Stack Aztec CG65

secondary return address is the address is the calling function to which
the intermediary routine returns. On entry to a called function, its
primary return address is at the top of the 6502 hardware stack and its
secondary return address is at the top of the pseudo stack.

5.7 Getting information about a calling function

Once you’ve gotten all the information you can about the active
function, using its frame on the pseudo stack, you can get information
about the function that called it by examining the calling function’s
frame on the pseudo stack. If necessary, you can continue examining
frames on the pseudo stack until you know the state of all the
function’s that have been called but that have not yet returned. In the
following discussion, we’ll call the function that called the active
function function 2, the function that called it function 3, and so on.

First of all, since the active function’s secondary return address,
whose value you know, is the address of the location in function 2 (ie,
the calling function) to which the active function will return, you can
scan the program’s symbol table and learn the identity of function 2.

In the active function’s frame, the two-byte fields at (FRAME)+4
and (FRAME)+6 contain the values that were in the FRAME and
LFRAME fields at the time function 2 was active. Using these values,
you can examine function 2’s frame and determine the parameters that
were passed to it and the values of its local variables. You can also
determine the identity of function 3 (ie, the function that called
function 2) from the secondary return address field within function 2’s
frame, and you can locate function 3’s frame using the fields in
function 2’s frame that were in the FRAME and LFRAME fields when
function 2 was active.

- tech.34 -

